February 28 Math 1190 sec. 62 \& 63 Spring 2017

Section 3.2: Implicit Differentiation; Derivatives of the Inverse Trigonometric Functions

Finding a Derivative Using Implicit Differentiation:

- Take the derivative of both sides of an equation with respect to the independent variable.
x
- Use all necessary rules for differenting powers, products, quotients, trig functions, exponentials, compositions, etc.
- Remember the chain rule for each term involving the dependent variable (e.g. mult. by $\frac{d y}{d x}$ as required).
- Use necessary algebra to isolate the desired derivative $\frac{d y}{d \underline{x}}$.

Example
Find $\frac{d y}{d x}$.

$$
\begin{gathered}
\sin (x+y)=y^{2} \\
\frac{d}{d x}(\sin (x+y))=\frac{d}{d x}\left(y^{2}\right) \\
\cos (x+y) \cdot\left(1+1 \cdot \frac{d y}{d x}\right)=2 y \cdot \frac{d y}{d x} \\
\underbrace{\cos (x+y)}+\underbrace{\cos (x+y) \cdot \frac{d y}{d x}}=2 y \underbrace{\frac{d y}{d x}}_{\leftarrow} \\
\frac{\cos (x+y)}{d x}-2 y \frac{d y}{d x}=-\cos (x+y) \\
\frac{d y}{d x}(\cos (x+y)-2 y)=\underbrace{\cos (x+y)-2 y}_{\text {derivative }}
\end{gathered}
$$

$$
\frac{d y}{d x}=\frac{-\cos (x+y)}{\cos (x+y)-2 y}
$$

$$
\begin{aligned}
& y=x^{2}+3 x \\
& y^{\prime}=2 x+3
\end{aligned}
$$

Example
Find the equation of the line tangent to the graph of the relation $\sin (x+y)=y^{2}$ at the point $(\pi, 0)$.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{-\cos (x+y)}{\cos (x+y)-2 y} \\
& \text { point }((\pi, 0) \\
& \text { slope } \rightarrow \frac{d y}{d x,} \\
& \left.\frac{d y}{d x}\right|_{(\pi, 0)}=\frac{-\cos (\pi+0)}{\cos (\pi+0)-2(0)}=\frac{-(-1)}{(-1)-0}=-1 \rightarrow \text { slope at } x=\pi, \quad y=0 \\
& y-y_{1}=m\left(x-x_{1}\right)
\end{aligned}
$$

$$
\begin{gathered}
y-0=-1(x-\pi) \\
y=-x+\pi
\end{gathered}
$$

Question
Determine $\frac{d y}{d x}$ if $x^{2} y^{3}=2 x-y^{2}$.

$$
\begin{gathered}
f \quad g \\
\frac{d}{d x}\left(x^{2} \cdot y^{3}\right)=\frac{d}{d x}\left(2 x-y^{2}\right) \\
2 x \cdot y^{3}+x^{2} \cdot 3 y^{2} \frac{d y}{d x}=2-2 y \frac{d y}{d x}
\end{gathered}
$$

(a) $\frac{d y}{d x}=\frac{2}{3 x^{2} y^{2}+2 y}$
left

$$
3 x^{2} y^{2} \frac{d y}{d x}+2 y \frac{d y}{d x}=2-2 x y^{3}
$$

(b) $\frac{d y}{d x}=\frac{2-2 x y^{3}}{3 x^{2} y^{2}+2 y} \quad$ right

$$
\frac{d y}{d x}\left(3 x^{2} y^{2}+2 y\right)=2-2 x y^{3}
$$

(c) $\frac{d y}{d x}=\frac{2-2 x y^{2}}{3 x^{2} y+2} \quad$ neither

$$
\frac{d y}{d x}=\frac{2-2 x y^{3}}{3 x^{2} y^{2}+2 y}
$$

The Power Rule: Rational Exponents $\quad \frac{d}{d x}\left(x^{-3}\right)=-3 x^{-4}$ Let $y=x^{p / 2}$ where p and q are integers. This can be written implicitly as $(y)^{q}=\left(x^{\frac{p}{8}}\right)^{q}$

$$
y^{q}=x^{p} .
$$

$$
\left(x^{a}\right)^{b}=x^{a b}
$$

Find $\frac{d y}{d x}$.

$$
\begin{aligned}
& \frac{d}{d x}\left(y^{q}\right)=\frac{d}{d x}\left(x^{p}\right) \\
& \frac{q y^{q-1} \frac{d y}{d x}}{q y^{q-1}}=\frac{p x^{p-1}}{q y^{q-1}} \\
& \frac{d y}{d x}=\frac{p}{q} \frac{x^{p-1}}{\left.\sqrt{y}\right|^{q-1}}=\frac{p}{q} \cdot \frac{x^{p-1}}{\left(x^{p / q}\right)^{q-1}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x^{a}}{x^{b}}=x^{a-b} \frac{x^{p-1}}{x^{\frac{p(q-1)}{q}}} \\
& \frac{x^{p-1}}{x^{\frac{p q-p}{q}}}=x^{p-1-\frac{p q-p}{q}} \\
&=x^{\frac{q}{q(p-1)} q} \frac{p}{q} x^{\frac{p q-p}{q}-1} \\
&=x^{\frac{q p-q-p q+p}{q}} \\
&=x^{\frac{-q+p}{q}} \\
&=x^{-\frac{q}{q}+\frac{p}{q}}=x^{\frac{p}{q}-1}
\end{aligned}
$$

The Power Rule: Rational Exponents

Theorem: If r is any rational number, then when x^{r} is defined, the function $y=x^{r}$ is differentiable and

$$
\frac{d}{d x} x^{r}=r x^{r-1}
$$

for all x such that x^{r-1} is defined.

Examples
Evaluate
(a) $\frac{d}{d x} \sqrt[4]{x}=\frac{d}{d x}\left(x^{\frac{1}{4}}\right)=\frac{1}{4} x^{\frac{1}{4}-1}=\frac{1}{4} x^{-\frac{3}{4}}=\frac{1}{4 \sqrt[4]{x^{3}}}$
(b)

$$
\begin{aligned}
\frac{d}{d v} \csc (\sqrt{v})=\frac{d}{d v} \csc \left(v^{\frac{1}{2}}\right) & =-\csc \left(v^{\frac{1}{2}}\right) \cot \left(v^{\frac{1}{2}}\right) \cdot \frac{d}{d v}\left(v^{\frac{1}{2}}\right) \\
& =-\csc \left(v^{\frac{1}{2}}\right) \cot \left(v^{\frac{1}{2}}\right) \cdot \frac{1}{2} v^{-\frac{1}{2}} \\
& =-\frac{\csc (\sqrt{v}) \cot (\sqrt{v})}{2 \sqrt{v}}
\end{aligned}
$$

Question
Find $g^{\prime}(t)$ where $g(t)=\sqrt[5]{t}$.

$$
g(t)=t^{\frac{1}{5}} \quad g^{\prime}(t)=\frac{1}{5} t^{-\frac{4}{5}}
$$

(a) $g^{\prime}(t)=5 t^{4} \quad$ left
(b) $g^{\prime}(t)=-5 t^{-6} \quad$ right
(c) $g^{\prime}(t)=\frac{1}{5 t^{4 / 5}} \quad$ both $\quad=\frac{1}{5 \sqrt[5]{t^{4}}}$
(d) $g^{\prime}(t)=\frac{1}{5} t^{4 / 5} \quad$ neither

Inverse Functions

Suppose $\underline{y}=f(\underline{x})$ and $\underline{x}=g(y)$ are inverse functions-i.e. $(g \circ f)(x)=g(f(x))=x$ for all x in the domain of f.

Theorem: Let f be differentiable on an open interval containing the number x_{0}. If $f^{\prime}\left(x_{0}\right) \neq 0$, then g is differentiable at $y_{0}=f\left(x_{0}\right)$. Moreover

$$
\begin{gathered}
\frac{d}{d y} g\left(y_{0}\right)=g^{\prime}\left(\underline{y_{0}}\right)=\frac{1}{f^{\prime}\left(\underline{x_{0}}\right)} \\
\left(x_{0}, f\left(x_{0}\right)\right)
\end{gathered}
$$

Note that this refers to a pair $\left(x_{0}, y_{0}\right)$ on the graph of f-i.e. $\left(y_{0}, x_{0}\right)$ on the graph of g. The slope of the curve of f at this point is the reciprocal of the slope of the curve of g at the associated point.

Example
The function $f(x)=x^{7}+x+1$ has an inverse function g. Determine $g^{\prime}(3)$.

Ty value

$$
g^{\prime}(3)=\frac{1}{f^{\prime}\left(_ \text {value that goes with } y=3\right.}
$$

For what x is $f(x)=3$?

$$
\begin{aligned}
& x^{7}+x+1=3 \\
& x=1 \quad f(1)=3 \\
& g^{\prime}(3)=\frac{1}{f^{\prime}(1)} \quad f^{\prime}(x)=7 x^{6}+1
\end{aligned}
$$

$(1,3)$ point on graph of f

$$
g^{\prime}(3)=\frac{1}{8}
$$

$$
f^{\prime}(1)=7(1)^{y}+1=8
$$

Inverse Trigonometric Functions

Recall the definitions of the inverse trigonometric functions.

$$
\begin{gathered}
\underset{\text { arghe }}{\rightarrow} y=\sin ^{-1} x \quad \Longleftrightarrow x=\sin y, \quad-1 \leq x \leq 1, \quad-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \\
y=\cos ^{-1} x \quad \Longleftrightarrow x=\cos y, \quad-1 \leq x \leq 1, \quad 0 \leq y \leq \pi \\
y=\tan ^{-1} x \quad \Longleftrightarrow \quad x=\tan y, \quad-\infty<x<\infty, \quad-\frac{\pi}{2}<y<\frac{\pi}{2}
\end{gathered}
$$

Inverse Trigonometric Functions

There are different conventions used for the ranges of the remaining functions. Sullivan and Miranda use

$$
\begin{gathered}
y=\cot ^{-1} x \quad \Longleftrightarrow \quad x=\cot y, \quad-\infty<x<\infty, \quad 0<y<\pi \\
y=\csc ^{-1} x \quad \Longleftrightarrow \quad x=\csc y, \quad|x| \geq 1, \quad y \in\left(-\pi,-\frac{\pi}{2}\right] \cup\left(0, \frac{\pi}{2}\right] \\
y=\sec ^{-1} x \quad \Longleftrightarrow \quad x=\sec y, \quad|x| \geq 1, \quad y \in\left[0, \frac{\pi}{2}\right) \cup\left[\pi, \frac{3 \pi}{2}\right)
\end{gathered}
$$

Derivative of the Inverse Sine
Use implicit differentiation to find $\frac{d}{d x} \sin ^{-1} x$, and determine the interval over which $y=\sin ^{-1} x$ is differentiable.

$$
\begin{aligned}
y=\sin ^{-1} x & \sin y=x \\
& \frac{d}{d x}(\sin y)=\frac{d}{d x}(x) \\
& \cos y \cdot \frac{d y}{d x}=1 \\
& \frac{d y}{d x}=\frac{1}{\cos (y} \\
& \frac{d y}{d x}=\frac{1}{\cos \left(\sin ^{-1} x\right)}
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}
$$

$$
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}
$$

$$
a=\sqrt{1-x^{2}}
$$

$$
\cos \left(\sin ^{-1} x\right)=\frac{\sqrt{1-x^{2}}}{1}
$$

$$
=\sqrt{1-x^{2}}
$$

Where is $\sin ^{-1} x$ differentiable?
Rephrased: What is the domain of $y=\frac{1}{\sqrt{1-x^{2}}}$?

$$
\begin{gathered}
1-x^{2}>0 \\
x^{2}<1
\end{gathered}
$$

February 22, $2017 \quad 18 / 78$

$$
-1<x<1
$$

Examples

$$
\frac{d}{d u} \sin ^{-1} u=\frac{1}{\sqrt{1-u^{2}}}
$$

Evaluate each derivative
(a) $\frac{d}{d x} \sin ^{-1}\left(e^{x}\right)$
outside: $\sin ^{-1}()$
inside: e^{x}

$$
\begin{aligned}
& =\frac{1}{\sqrt{1-\left(e^{x}\right)^{2}}} \cdot \frac{d}{d x}\left(e^{x}\right) \\
& =\frac{1}{\sqrt{1-\left(e^{x}\right)^{2}}} \cdot e^{x} \\
& =\frac{e^{x}}{\sqrt{1-e^{2 x}}}
\end{aligned}
$$

Examples
Evaluate each derivative
(b)

$$
\begin{aligned}
& \frac{d}{d x}\left(\sin ^{-1} x\right)^{3} \\
= & 3\left(\sin ^{-1} x\right)^{2} \cdot \frac{d}{d x}\left(\sin ^{-1} x\right) \\
= & 3\left(\sin ^{-1} x\right)^{2} \cdot \frac{1}{\sqrt{1-x^{2}}} \\
= & \frac{3\left(\sin ^{-1} x\right)^{2}}{\sqrt{1-x^{2}}}
\end{aligned}
$$

outside: ()3
inside: $\sin ^{-1} x$

$$
\begin{aligned}
& \frac{d}{d x}\left(\sin ^{-1}\left(e^{x}\right)\right)^{3} \\
& =3\left(\sin ^{-1}\left(e^{x}\right)\right)^{2} \frac{d}{d x}\left(\sin ^{-1}\left(e^{x}\right)\right) \\
& =3\left(\sin ^{-1}\left(e^{x}\right)\right)^{2} \frac{1}{\sqrt{1-\left(e^{x}\right)^{2}}} \cdot \frac{d}{d x}\left(e^{x}\right) \\
& =3\left(\sin ^{-1}\left(e^{x}\right)\right)^{2} \frac{1}{\sqrt{1-e^{2 x}}} \cdot e^{x}
\end{aligned}
$$

Derivative of the Inverse Tangent

Theorem: If $f(x)=\tan ^{-1} x$, then f is differentiable for all real x and

$$
f^{\prime}(x)=\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}} .
$$

The argument uses implicit differentiation just like we used for the inverse sine function. It is left as an EXERCISE.

Question: $\frac{d}{d u} \tan ^{-1} u=\frac{1}{1+u^{2}}$

Find $\frac{d y}{d x}$ where $y=\tan ^{-1}\left(e^{x}\right)$.

$$
\frac{d y}{d x}=\frac{1}{1+\left(e^{x}\right)^{2}} \cdot \frac{d}{d x}\left(e^{x}\right)
$$

(a) $\frac{d y}{d x}=\frac{e^{x}}{1+e^{2 x}}$
right
(b) $\frac{d y}{d x}=\frac{e^{x}}{1+x^{2}} \quad$ left
(c) $\frac{d y}{d x}=\frac{1}{1+e^{2 x}} \quad$ both
(d) $\frac{d y}{d x}=\sec ^{-2}\left(e^{x}\right) \quad$ wither

Derivative of the Inverse Secant

Theorem: If $f(x)=\sec ^{-1} x$, then f is differentiable for all $|x|>1$ and

$$
f^{\prime}(x)=\frac{d}{d x} \sec ^{-1} x=\frac{1}{x \sqrt{x^{2}-1}}
$$

Examples
Evaluate
(a)

$$
\begin{aligned}
\frac{d}{d x} \sec ^{-1}\left(x^{2}\right)=\frac{1}{\left(x^{2}\right) \sqrt{\left(x^{2}\right)^{2}-1}} \cdot \frac{d}{d x}\left(x^{2}\right) & =\frac{2 x}{x^{x} \sqrt{x^{4}-1}} \\
& =\frac{2}{x \sqrt{x^{4}-1}}
\end{aligned}
$$

(b) $\frac{d}{d x} \tan ^{-1}(\sec x)$

The Remaining Inverse Functions

Due to the trigonometric cofunction identities, it can be shown that

$$
\begin{aligned}
& \cos ^{-1} x=\frac{\pi}{2}-\sin ^{-1} x \\
& \cot ^{-1} x=\frac{\pi}{2}-\tan ^{-1} x
\end{aligned}
$$

and

$$
\csc ^{-1} x=\frac{\pi}{2}-\sec ^{-1} x
$$

Derivatives of Inverse Trig Functions

$$
\begin{aligned}
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}, & \frac{d}{d x} \cos ^{-1} x=-\frac{1}{\sqrt{1-x^{2}}} \\
\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}, & \frac{d}{d x} \cot ^{-1} x=-\frac{1}{1+x^{2}} \\
\frac{d}{d x} \sec ^{-1} x=\frac{1}{x \sqrt{x^{2}-1}}, & \frac{d}{d x} \csc ^{-1} x=-\frac{1}{x \sqrt{x^{2}-1}}
\end{aligned}
$$

