February 28 Math 1190 sec. 62 & 63 Spring 2017

Section 3.2: Implicit Differentiation; Derivatives of the Inverse
Trigonometric Functions

Finding a Derivative Using Implicit Differentiation:

» Take the derivative of both sides of an equation with respect to the

independent variable.
X

» Use all necessary rules for differenting powers, products,
quotients, trig functions, exponentials, compositions, etc.

» Remember the chain rule for each term involving the dependent
variable (e.g. mult. by % as required).

» Use necessary algebra to isolate the desired derivative %.
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Example
Find the equation of the line tangent to the graph of the relation
sin(x + y) = y? at the point (r, 0).
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d ~3 — -"*
The [_Z’oyyzer Rule: Rational Exponents VI CUD RIS

Let/ ; — xP/9 {vhere p and q are integers. This can be written implicitly
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The Power Rule: Rational Exponents

Theorem: If r is any rational number, then when x" is defined, the
function y = x” is differentiable and

o}
7Xr — I’Xr71
ax

for all x such that x"~1 is defined.
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Examples

Evaluate
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Question )
Find ¢'(t) where g(t) = V1. 3[{\= +° 6!({3 - 54
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Inverse Functions

Suppose y = f(x) and x = g(y) are inverse functions—i.e.
(g o f)(x) = g(f(x)) = x for all x in the domain of f.

Theorem: Let f be differentiable on an open interval containing the
number xp. If f'(xo) # 0, then g is differentiable at yo = f(xp). Moreover

d , 1
FyQ(YO) =9'(Yo) = @-

(X.,,F(m}
Note that this refers to a pair (xp, yo) on the graph of f—i.e. (yo, Xp) on
the graph of g. The slope of the curve of f at this point is the reciprocal
of the slope of the curve of g at the associated point.

February 22, 2017 12/78



Example
The function f(x) = x” + x + 1 has an inverse function g. Determine

g 3.
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Inverse Trigonometric Functions

N

Recall the definitions of the inverse trigonometric functions.

P . ™ ™
Ly=sinT'x <<= x=siny, -1<x<1, —_-<y<_
\e | 2 2

(2] (7S
y=cos'x <= x=cosy, —-1<x<1, 0<y<n

1 7T s

y=tan ' x <<= Xx=tany, —oco< X< o0, —§<y<§
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Inverse Trigonometric Functions

There are different conventions used for the ranges of the remaining
functions. Sullivan and Miranda use

y=cot'x <= x=coty, —co<x<oo, O<y<m

y=csc'x <<= x=cscy, |x|>1, y€<—7r,——}u(0,q

y=sec 'x <«= x=secy, |x]>1, ye[o,g)u[w?ﬂr>
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Derivative of the Inverse Sine
Use implicit differentiation to find Z sin™"

x, and determine the interval
over which y = sin™! x is differentiable.
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Examples o I-w>
Evaluate each derivative
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Examples
Evaluate each derivative
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Derivative of the Inverse Tangent

Theorem: If f(x) = tan~" x, then f is differentiable for all real x and

d 1
/ —1
f'(x)= dx tan™' x = 2

The argument uses implicit differentiation just like we used for the
inverse sine function. It is left as an EXERCISE.
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Question: Ltan"u =

1
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Derivative of the Inverse Secant

Theorem: If /(x) = sec™ x, then f is differentiable for all |x| > 1 and

f'(x) = 9 sectx=— 1
ax xv/x2 -1
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Examples

Evaluate
d _ \ d
(a) ——sec '(x?) = R I R U
ax (D [ e &) {0
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(b) o tan~(sec x)
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The Remaining Inverse Functions

Due to the trigonometric cofunction identities, it can be shown that

Xx=2_sin"Tx
2

cos™!

B T _
cot 1x:§—tan Tx

and
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Derivatives of Inverse Trig Functions

1 d 1
o 1
—sin"'x = , —cos 'x=
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—tan" ' x = 1 —cot 'x=— 1
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