February 2 Math 1190 sec. 63 Spring 2017

Section 1.5: Infinite Limits, Limits at Infinity, Asymptotes
Here, we will consider limits involving the symbols ∞ (infinity) and $-\infty$ (negative infinity).

They will be used to denote unboundedness in the positive and negative directions, respectively.

Infinities: Arithmetic and Indeterminate Forms

While ∞ and $-\infty$ are NOT NUMBERS, there is an arithmetic for using these symbols. In particular

- $\infty+\infty=\infty$
- $\infty+c=\infty$ for any real number c
- $\infty \cdot c=\infty$ if $c>0$ and $\infty \cdot c=-\infty$ if $c<0$
- $\frac{0}{\infty}=\frac{0}{-\infty}=0$

Other forms that may appear are indeterminate. The following are not defined.

$$
\infty-\infty, \quad \frac{\infty}{\infty}, \quad 0 \cdot \infty, \quad \infty^{0}
$$

Infinite Limits

Investigate the limit

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}
$$

$\left.\begin{array}{|r|c|}\hline x & f(x)=\frac{1}{x^{2}} \\ \hline-0.1 & 100 \\ \hline-0.01 & 10000 \\ \hline-0.001 & 1,000000 \\ \hline 0 & \text { undefined } \\ \hline 0.001 & 1000000 \\ \hline 0.01 & 10000 \\ \hline 0.1 & 100 \\ \hline\end{array}\right\}$

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty
$$

Infinite Limits

Definition: Let $f(x)$ be defined on an open interval containing c except possibly at c. Then

$$
\lim _{x \rightarrow c} f(x)=\infty
$$

provided $f(x)$ can be made arbitrarily large by taking x sufficiently close to c. (The definition of

$$
\lim _{x \rightarrow c} f(x)=-\infty
$$

is similar except that f can be made arbitrarily large and negative.)
The top limit statement reads the limit as x approaches c of $f(x)$ equals infinity.

Infinite Limits
Investigate the limit

$$
\lim _{x \rightarrow 0} \frac{1}{x}
$$

$\lim _{x \rightarrow 0} \frac{1}{x}$ DUE
\(\left.\begin{array}{|r|c|}\hline x \& f(x)=\frac{1}{x}

\hline-0.1 \& -10

\hline-0.01 \& -100

\hline-0.001 \& -1000

\hline 0 \& undefined

\hline 0.001 \& 1000

\hline 0.01 \& 100

\hline 0.1 \& 10

\hline\end{array}\right\}\)| going bound |
| :---: |
| without |
| but negative |

we cons ty

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty \\
& \text { and } \\
& \lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty
\end{aligned}
$$

Infinite Limits and Graphs

Figure: If f has an infinite limit at a finite number c, then the graph has a vertical asymptote.

An Observation

Suppose when taking a limit $\lim _{x \rightarrow c} f(x)$ we see the form

Then this limit MAY be either ∞ or $-\infty$.

- If we determine that the ratio is positive for all x near c, the limit is ∞.
- If we determine that the ratio is negative for all x near c, the limit is $-\infty$.
- If the ratio can take either sign for x sufficiently close to c, the limit DNE.

Evaluate Each Limit if Possible

$$
\text { as } x \rightarrow 1^{-}, 2 x+1 \rightarrow 3
$$

(a) $\lim _{x \rightarrow 1^{-}} \frac{2 x+1}{x-1}$ which is positive. $x-1$ is going to zeno.
$x \rightarrow 1^{-}$means x is less than $1 . \quad x<1 \Rightarrow x-1<0$ the denominator goes to zero through negative numbers.
The form is " $\frac{3}{0}$ " with \pm which is negative.

So $\lim _{x \rightarrow 1^{-}} \frac{2 x+1}{x-1}=-\infty$
$2 x+1 \rightarrow 3$ which is still positive.
(b) $\lim _{x \rightarrow 1^{+}} \frac{2 x+1}{x-1}$ The denominator is still hooded to 3 ono, so the form is "3"
$x \rightarrow 1^{+}$mons x is greater than $1 . x>1 \Rightarrow x-1>0$ positive
The ratio looks like $\frac{t}{t}$ which is positive.
Hence

$$
\lim _{x \rightarrow 1^{+}} \frac{2 x+1}{x-1}=\infty
$$

(c) $\lim _{x \rightarrow 1} \frac{2 x+1}{x-1}$ DNE

The numerator heads to 3 which is positive.
The denominator is going to zero, but the sign could be t or - .

Figure: $f(x)=\frac{2 x+1}{x-1}$

Question

Evaluate if possible $\lim _{t \rightarrow 2} \frac{3}{(t-2)^{2}}$.
(a) ∞
(b) $-\infty$
(c) 4
(d) DNE

Note 3 is positive, and due to the square $(t-2)^{2}$ is positive.
The form is " $\frac{3 \text { " }}{0}$ with $\frac{t}{t}$ which is positive.

Well Known Infinite Limits

Some limits that follow from what we know about these functions
$\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty$
$\lim _{\theta \rightarrow \frac{\pi}{2}^{-}} \tan \theta=\infty$ and $\lim _{\theta \rightarrow \frac{\pi}{2}^{+}} \tan \theta=-\infty$
$\lim _{\theta \rightarrow 0^{-}} \cot \theta=-\infty$ and $\lim _{\theta \rightarrow 0^{+}} \cot \theta=\infty$
$\lim _{\theta \rightarrow \pi^{-}} \sec \theta=\infty \quad$ and $\quad \lim _{\theta \rightarrow \frac{\pi}{2}^{+}} \sec \theta=-\infty$
$\lim _{\theta \rightarrow 0^{-}} \csc \theta=-\infty$ and $\lim _{\theta \rightarrow 0^{+}} \csc \theta=\infty$

Infinite Limits and Graphs

Limits at Infinity

We know what is meant by a limit being infinite (i.e. $f \rightarrow \infty$ or $f \rightarrow-\infty)$. Now, we want to consider limits like

$$
\begin{gathered}
\lim _{x \rightarrow \infty} f(x) \quad \text { or like } \\
\lim _{x \rightarrow-\infty} f(x)
\end{gathered}
$$

What is meant by such a thing, and how is it related to a function's graph?

Definitions

Let f be defined on an interval (a, ∞). Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

provided the value of f can be made arbitrarily close to L by taking x sufficiently large.

Similarly

Defintion: Let f be defined on an interval $(-\infty, a)$. Then

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

provided the value of f can be made arbitrarily close to L by taking x sufficiently large and negative.

Example
Investigate the limit

$$
\lim _{x \rightarrow-\infty} e^{x}
$$

At the for left, the

Some Results to Remember

Let k be any real number and let p be rational. Then

$$
\lim _{x \rightarrow \infty} \frac{k}{x^{p}}=0 \quad \text { and } \quad \lim _{x \rightarrow-\infty} \frac{k}{x^{p}}=0
$$

The latter holds assuming x^{p} is defined for $x<0$.

$$
\text { e.s. } \lim _{x \rightarrow \infty} \frac{7}{x^{4}}=0 \quad \text { or } \quad \lim _{x \rightarrow-\infty} \frac{\pi}{x^{6}}=0
$$

In essence, if the numerator of a ratio is staying finite while the denominator is becoming infinite, the ratio is tending to zero.

We know $\lim _{x \rightarrow \infty} \frac{k}{x^{\rho}}=0$ for p-positive
Examples
Evaluate if possible

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}+2 x-1}{x^{2}+5 x+2}
$$

We identify the lamest power of x in the denominator.
Here it's x^{2}. We multiply by $\frac{1}{x^{2}} / \frac{1}{x^{2}}$.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\frac{3 x^{2}+2 x-1}{x^{2}+5 x+2}\right) \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{3 x^{2}}{x^{2}}+\frac{2 x}{x^{2}}-\frac{1}{x^{2}}}{\frac{x^{2}}{x^{2}}+\frac{5 x}{x^{2}}+\frac{2}{x^{2}}} \quad \text { Distribute }
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{3+\frac{2}{x}-\frac{1}{x^{2}}}{1+\frac{5}{x}+\frac{2}{x^{2}}} \\
& =\frac{3+0-0}{1+0+0}=\frac{3}{1}=3
\end{aligned}
$$

Cancel os needed

* $\quad \lim _{x \rightarrow \infty} x=\infty \quad \lim _{x \rightarrow \infty} x^{3}=\infty \quad$ and $\quad \lim _{x \rightarrow \infty} x^{p}=\infty$ for p positive.

Again, well find the highest power $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+1}}{x+1}$ of x in the denominator and multi: ply and divide by its reciprocal.

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty}\left(\frac{\sqrt{x^{2}+1}}{x+1}\right) \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \\
& \quad=\lim _{x \rightarrow \infty} \frac{\frac{1}{x} \sqrt{x^{2}+1}}{1+\frac{1}{x}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{1}{x^{2}}} \sqrt{x^{2}+1}}{1+\frac{1}{x}} \quad \text { by (1) } \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{1}{x^{2}}\left(x^{2}+1\right)}}{1+\frac{1}{x}} \quad \begin{array}{l}
x=\sqrt{x^{2}} \\
=\lim _{x \rightarrow \infty} \frac{\sqrt{a} \sqrt{b}=\sqrt{a \cdot b}}{1+\frac{1}{x}}=\frac{\sqrt{1+0}}{1+0}=\frac{\sqrt{1}}{1}=1
\end{array}
\end{aligned}
$$

* Nole if $x<0$ then $x=-\sqrt{x^{2}} *$

Question

Evaluate if possible
(a) DNE

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\sqrt{3 x^{2}+2 x}}{4 x+3} \\
= & \lim _{x \rightarrow \infty}\left(\frac{\sqrt{3 x^{2}+2 x}}{4 x+3}\right) \cdot \frac{1}{\frac{x}{1}}
\end{aligned}
$$

(b) $\frac{3}{4}$

$$
=\lim _{x \rightarrow \infty} \frac{\frac{1}{x} \sqrt{3 x^{2}+2 x}}{4+3 / x}
$$

(c) $\sqrt{3}$
(d) $\frac{\sqrt{3}}{4}$

$$
=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{1}{x^{2}}\left(3 x^{2}+2 x\right)}}{4+\frac{3}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{3+^{2} / x}}{4+\frac{3}{x}}=\frac{\sqrt{3+0}}{4+0}=\frac{\sqrt{3}}{4}
$$

Infinte Limits at Infinity

The following limits may arise

$$
\begin{array}{ll}
\lim _{x \rightarrow \infty} f(x)=\infty, & \lim _{x \rightarrow \infty} f(x)=-\infty \\
\lim _{x \rightarrow-\infty} f(x)=\infty, & \lim _{x \rightarrow-\infty} f(x)=-\infty
\end{array}
$$

Two critical limits to remember (YOU'LL NEED TO KNOW THESE)

$$
\lim _{x \rightarrow \infty} e^{x}=\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} \ln (x)=\infty
$$

$$
\text { also } \quad \lim _{x \rightarrow-\infty} e^{x}=0 \text { and } \lim _{x \rightarrow 0^{+}} \ln (x)=-\infty
$$

Vertical and Horizontal Asymptotes

Vertical Asymptotes: The line $x=c$ is a vertical asymptote to the graph of f if

$$
\lim _{x \rightarrow c^{+}} f(x)= \pm \infty, \quad \text { or } \quad \lim _{x \rightarrow c^{-}} f(x)= \pm \infty
$$

Horizontal Asymptotes:The line $y=L$ is a horizontal asymptote to the graph of f if

$$
\lim _{x \rightarrow \infty} f(x)=L, \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

A good candidate for a vertical asymptote would be a number that makes a denominator zero.

Questions

(1) True)or False: Since $\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty$, we can conclude that the line $x=0$ is a vertical asymptote to the graph of $y=\ln (x)$.
(2) True or False: Since $\lim _{x \rightarrow-\infty} e^{x}=0$, we can conclude that the line $y=0$ is a horizontal asymptote to the graph of $y=e^{x}$.

