
Feb. 2 Math 2254H sec 015H Spring 2015
Section 7.3 Trigonometric Substitution

Figure: The region bounded below y = x/
√

x2 − 4 for
√

5 ≤ x ≤
√

8 is
rotated about the y -axis to form a solid.
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Find the volume of the solid.
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Section 7.4: Rational Functions, Partial Fractions

Simplify

1
x − 3

− 2
x + 4
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Now evaluate the integral∫
10− x

x2 + x − 12
dx
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We sort’a cheated! The big question is:

If we started with the simplified total fraction

−x + 10
x2 + x − 12

,

how could we figure out that it decomposes into the sum of the smaller
partial fractions

1
x − 3

− 2
x + 4

?

() January 27, 2015 7 / 45



Rational Functions

Recall that a rational function is one of the form

f (x) =
P(x)
Q(x)

where P and Q are polynomials.

The function is called a proper rational function if

degree(P(x)) < degree(Q(x)).
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Rational Functions

If degree(P(x)) ≥ degree(Q(x)), then f is an improper rational
function. In this case, we can write

f (x) = p(x) +
r(x)
Q(x)

where p is a polynomial, and r(x)/Q(x) is proper. We can obtain this
using long division.

dividend
divisor

= quotient +
remainder

divisor
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Decomposing Proper Rational Functions

Theorem: Every polynomial Q(x) with real coefficients can be
factored into a product

Q(x) = q1(x)q2(x) · · · qk (x)

where each qi is either a linear factor (i.e. qi(x) = ax + b) or an
irreducible quadratic (i.e. qi(x) = ax2 + bx + c where b2 − 4ac < 0).

Knowing that such a factorization exists, and being able to compute it
are two different animals! But at least we can know that the cases to
be outlined cover all contingencies.
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Decomposing Proper Rational Functions

Let f (x) = P(x)/Q(x) be a proper rational function, and let Q(x) be
factored completely into linear and irreducible quadratic factors

f (x) =
P(x)

q1(x)q2(x) · · · qk (x)
.

We’ll consider four cases
(i) each factor of Q is linear and none are repeated,
(ii) each factor of Q is linear and one or more is repeated,
(iii) some factor(s) of Q are quadratic, but no quadratic is repeated,
(iv) Q has at least one repeated quadratic factor.

() January 27, 2015 11 / 45



Case (i) Non-repeated Linear Factors

Suppose Q(x) = (a1x + b1)(a2x + b2) · · · (akx + bk ). And no pair of a’s
and b’s (both) match. Then we look for a decomposition of f in the form

P(x)
Q(x)

=
A1

a1x + b1
+

A1

a2x + b2
+ · · ·+ Ak

akx + bk
.

For example
10− x

(x − 3)(x + 4)
=

A
x − 3

+
B

x + 4
.

Note that each fraction in the expansion is a proper rational function
with denominator a line.
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Example: Evaluate the integral∫
4x − 2
x3 − x

dx
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Case (ii) A Repeated Linear Factor

Suppose Q(x) has only linear factors, but that one of them is repeated.
That is, suppose (aix + bi)

n is a factor of Q. Then for this term, the
decomposition of f will contain the n terms

Ai1

aix + b
+

Ai2

(aix + b)2 + · · ·+ Ain

(aix + b)n .

For example,

3x2 + 2x − 1
(x + 1)2(x − 2)3 =

A
x + 1

+
B

(x + 1)2 +
C

x − 2
+

D
(x − 2)2 +

E
(x − 2)3 .
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