Feb. 2 Math 2254H sec 015H Spring 2015

Section 7.3 Trigonometric Substitution

Figure: The region bounded below $y=x / \sqrt{x^{2}-4}$ for $\sqrt{5} \leq x \leq \sqrt{8}$ is rotated about the y-axis to form a solid.

Find the volume of the solid.
one shell wi thickness Δx

$$
V_{\text {shell }}=2 \pi r h \Delta x
$$

height $h=\frac{x}{\sqrt{x^{2}-4}}$, radius $r=x$
Total Volume $V=\int_{\sqrt{5}}^{\sqrt{8}} 2 \pi \frac{x^{2}}{\sqrt{x^{2}-4}} d x$

$$
\begin{aligned}
& \int \frac{x^{2}}{\sqrt{x^{2}-4}} d x \\
&= \int \frac{(2 \sec \theta)^{2} 2 \sec \theta \tan \theta d \theta}{2 \tan \theta} \\
&= 4 \int \sec ^{3} \theta d \theta \quad\left|\begin{array}{c}
2
\end{array}\right| \\
& x=2 \sec \theta \\
& d x=2 \sec \theta \tan \theta d \theta \\
&= 4 \sec \theta \tan \theta-4 \int \sec \theta \tan ^{2} \theta d \theta \quad u=\sec \theta \quad d u=\sec ^{2} \theta \tan \theta d \theta \\
&= v=\tan \theta \quad d v=\sec ^{2} \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
&= 4 \sec \theta \tan \theta-4 \int \sec \theta\left(\sec ^{2} \theta-1\right) d \theta \\
&= 4 \sec \theta \tan \theta-4 \int \sec ^{3} \theta d \theta+4 \int \sec \theta d \theta \Rightarrow \\
& 8 \int \sec ^{3} \theta d \theta=4 \sec \theta \tan \theta+4 \ln |\sec \theta+\tan \theta|+C \\
& \Rightarrow 4 \int \sec ^{3} \theta d \theta=2 \sec \theta \tan \theta+2 \ln |\sec \theta+\tan \theta|+k \\
& \int \frac{x^{2}}{\sqrt{x^{2}-4}} d x=2\left(\frac{x}{2}\right) \frac{\sqrt{x^{2}-4}}{2}+2 \ln \left|\frac{x}{2}+\frac{\sqrt{x^{2}-4}}{2}\right|+k \\
& 2 \pi \int_{\sqrt{5}}^{\sqrt{8}} \frac{x^{2}}{\sqrt{x^{2}-4}} d x=\left.\pi x \sqrt{x^{2}-4}\right|_{\sqrt{5}} ^{\sqrt{8}}+\left.4 \pi \ln \left|x+\sqrt{x^{2}-4}\right|\right|_{\sqrt{5}} ^{\sqrt{8}} \\
&=4 \sqrt{2} \pi-\sqrt{5} \pi+4 \pi \ln (\sqrt{8}+2)-4 \pi \ln (\sqrt{5}+1)
\end{aligned}
$$

Section 7.4: Rational Functions, Partial Fractions
Simplify

$$
\begin{aligned}
\frac{1}{x-3}-\frac{2}{x+4} & =\frac{x+4}{(x-3)(x+4)}-\frac{2(x-3)}{(x-3)(x+4)} \\
& =\frac{-x+10}{x^{2}+x-12}
\end{aligned}
$$

Now evaluate the integral

$$
\begin{aligned}
\int \frac{10-x}{x^{2}+x-12} d x & =\int\left(\frac{1}{x-3}-\frac{2}{x+4}\right) d x \\
& =\ln |x-3|-2 \ln |x+4|+C
\end{aligned}
$$

We sort'a cheated! The big question is:

If we started with the simplified total fraction

$$
\frac{-x+10}{x^{2}+x-12}
$$

how could we figure out that it decomposes into the sum of the smaller partial fractions

$$
\frac{1}{x-3}-\frac{2}{x+4} ?
$$

Rational Functions

Recall that a rational function is one of the form

$$
f(x)=\frac{P(x)}{Q(x)}
$$

where P and Q are polynomials.

The function is called a proper rational function if

$$
\text { degree }(P(x))<\operatorname{degree}(Q(x)) .
$$

Rational Functions

If degree $(P(x)) \geq \operatorname{degree}(Q(x))$, then f is an improper rational function. In this case, we can write

$$
f(x)=p(x)+\frac{r(x)}{Q(x)}
$$

where p is a polynomial, and $r(x) / Q(x)$ is proper. We can obtain this using long division.

$$
\frac{\text { dividend }}{\text { divisor }}=\text { quotient }+\frac{\text { remainder }}{\text { divisor }}
$$

Decomposing Proper Rational Functions

Theorem: Every polynomial $Q(x)$ with real coefficients can be factored into a product

$$
Q(x)=q_{1}(x) q_{2}(x) \cdots q_{k}(x)
$$

where each q_{i} is either a linear factor (i.e. $q_{i}(x)=a x+b$) or an irreducible quadratic (i.e. $q_{i}(x)=a x^{2}+b x+c$ where $b^{2}-4 a c<0$).

Knowing that such a factorization exists, and being able to compute it are two different animals! But at least we can know that the cases to be outlined cover all contingencies.

Decomposing Proper Rational Functions

Let $f(x)=P(x) / Q(x)$ be a proper rational function, and let $Q(x)$ be factored completely into linear and irreducible quadratic factors

$$
f(x)=\frac{P(x)}{q_{1}(x) q_{2}(x) \cdots q_{k}(x)}
$$

We'll consider four cases
(i) each factor of Q is linear and none are repeated,
(ii) each factor of Q is linear and one or more is repeated,
(iii) some factor(s) of Q are quadratic, but no quadratic is repeated,
(iv) Q has at least one repeated quadratic factor.

Case (i) Non-repeated Linear Factors

Suppose $Q(x)=\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{2}\right) \cdots\left(a_{k} x+b_{k}\right)$. And no pair of a 's and b 's (both) match. Then we look for a decomposition of f in the form

$$
\frac{P(x)}{Q(x)}=\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{a_{2} x+b_{2}}+\cdots+\frac{A_{k}}{a_{k} x+b_{k}}
$$

For example

$$
\frac{10-x}{(x-3)(x+4)}=\frac{A}{x-3}+\frac{B}{x+4} .
$$

Note that each fraction in the expansion is a proper rational function with denominator a line.

Example: Evaluate the integral

$$
\int \frac{4 x-2}{x^{3}-x} d x
$$

Partied Fractions:

$$
\begin{aligned}
\frac{4 x-2}{x^{3}-x} & =\frac{4 x-2}{x\left(x^{2}-1\right)}=\frac{4 x-2}{x(x-1)(x+1)} \\
& =\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1} \cdot\left(x^{3}-x\right)
\end{aligned}
$$

Clear fractions:

$$
\begin{aligned}
4 x-2 & =A(x-1)(x+1)+B x(x+1)+C x(x-1) \\
& =A\left(x^{2}-1\right)+B\left(x^{2}+x\right)+C\left(x^{2}-x\right) \\
0 x^{2}+4 x-2 & =(A+B+C) x^{2}+(B-C) x-A
\end{aligned}
$$

$$
\begin{aligned}
& A=2, \quad B-C=4, \quad A+B+C=0 \\
& B+C=-2 \\
& 2 B=2 \Rightarrow B=1 \quad 1-C=4 \Rightarrow \quad C=-3 \\
& \int \frac{4 x-2}{x^{3}-x} d x=\int\left(\frac{2}{x}+\frac{1}{x-1}-\frac{3}{x+1}\right) d x \\
&= 2 \ln |x|+\ln |x-1|-3 \ln |x+1|+C
\end{aligned}
$$

$$
4 x-2=A(x-1)(x+1)+B x(x+1)+C x(x-1)
$$

Set $x=0$

$$
\begin{aligned}
-2 & =A(-1)(1) \Rightarrow A=2 \\
x & =1 \\
4-2 & =B(1)(2) \Rightarrow B=1 \\
x & =-1 \\
-4-2 & =c(-1)(-2) \Rightarrow C=-3
\end{aligned}
$$

Case (ii) A Repeated Linear Factor

Suppose $Q(x)$ has only linear factors, but that one of them is repeated. That is, suppose $\left(a_{i} x+b_{i}\right)^{n}$ is a factor of Q. Then for this term, the decomposition of f will contain the n terms

$$
\frac{A_{i 1}}{a_{i} x+b_{i}}+\frac{A_{i 2}}{\left(a_{i} x+b_{i}\right)^{2}}+\cdots+\frac{A_{i n}}{\left(a_{i} x+b_{i}\right)^{n}} .
$$

For example,

$$
\frac{3 x^{2}+2 x-1}{(x+1)^{2}(x-2)^{3}}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{x-2}+\frac{D}{(x-2)^{2}}+\frac{E}{(x-2)^{3}} .
$$

