Feb. 2 Math 2254H sec 015H Spring 2015 Section 7.3 Trigonometric Substitution

Figure: The region bounded below $y = x/\sqrt{x^2 - 4}$ for $\sqrt{5} \le x \le \sqrt{8}$ is rotated about the *y*-axis to form a solid.

Find the volume of the solid.

$$\int \frac{x^2}{\sqrt{x^2 - 4}} dx$$

$$= \int \frac{(25ec\theta)^3 z}{25ec\theta + x\theta d\theta} d\theta}{2 \tan \theta}$$

$$= \int \frac{(25ec\theta)^3 z}{25ec\theta + x\theta d\theta} d\theta}{2 \tan \theta}$$

$$= 4 \int Sec^3 \theta d\theta \qquad \ln t b_2 \text{ parts}$$

$$= 4 \int Sec\theta + \ln \theta - 4 \int Sec\theta + \ln^2 \theta d\theta \qquad \ln t = Sec\theta \qquad dn = Sec\theta \tan \theta d\theta$$

$$= 4 \int Sec\theta + \ln^2 \theta d\theta \qquad h = Sec\theta \qquad dn = Sec\theta \tan \theta d\theta$$

$$= 4 \int Sec\theta + \ln^2 \theta d\theta \qquad h = Sec\theta \qquad dn = Sec\theta \tan \theta d\theta$$

$$= 4 \int Sec\theta + \ln^2 \theta d\theta \qquad h = Sec\theta \qquad dn = Sec\theta \tan \theta d\theta$$

January 27, 2015 3 / 45

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

$$= 4 \operatorname{Sec} \theta + \operatorname{on} \theta - 4 \int \operatorname{Sec} \theta \left(\operatorname{Sec}^{2} \theta - 1 \right) d\theta$$

$$= 4 \operatorname{Sec} \theta + \operatorname{on} \theta - 4 \int \operatorname{Sec}^{3} \theta d\theta + 4 \int \operatorname{Sec} \theta d\theta \implies \Rightarrow$$

$$= 8 \int \operatorname{Sec}^{3} \theta d\theta = 4 \operatorname{Sec} \theta + \operatorname{on} \theta + 4 \operatorname{In} \operatorname{Sec} \theta + \operatorname{Ion} \theta + 4 \operatorname{C}$$

$$\Rightarrow 4 \int \operatorname{Sec}^{3} \theta d\theta = 2 \operatorname{Sec} \theta + \operatorname{on} \theta + 2 \operatorname{In} \operatorname{Sec} \theta + \operatorname{Ion} \theta + 4 \operatorname{C}$$

$$\int \frac{x^{2}}{\sqrt{x^{2} - 4}} dx = 2 \left(\frac{x}{2} \right) \frac{\sqrt{x^{2} - 4}}{2} + 2 \operatorname{In} \left| \frac{x}{2} + \frac{\sqrt{x^{2} - 4}}{2} \right| + k$$

$$2\pi \int_{15}^{16} \frac{x^{2}}{\sqrt{x^{2} - 4}} dx = \pi x \sqrt{x^{2} - 4} \left| \frac{\sqrt{8}}{\sqrt{5}} + 4\pi \operatorname{In} \operatorname{In} \left| x + \sqrt{x^{2} - 4} \right| \left| \frac{\sqrt{8}}{\sqrt{5}} \right|$$

$$= 4\sqrt{2} \pi - \sqrt{5} \pi + 4\pi \operatorname{In} \left(\sqrt{8} + 2 \right) - 4\pi \operatorname{In} \left(\sqrt{5} + 1 \right)$$

$$\operatorname{January 27,2015} 4/45$$

Section 7.4: Rational Functions, Partial Fractions

Simplify

$$\frac{1}{x-3} - \frac{2}{x+4} = \frac{x+4}{(x-3)(x+4)} - \frac{2(x-3)}{(x-3)(x+4)}$$

$$= \frac{-x + 10}{x^2 + x - 12}$$

Now evaluate the integral

$$\int \frac{10-x}{x^2+x-12} \, dx = \int \left(\frac{1}{x-3} - \frac{2}{x+4} \right) \, dx$$

$$= l_n(x-3) - 2l_n(x+4) + C$$

2

イロト イロト イヨト イヨト

We sort'a cheated! The big question is:

If we started with the simplified total fraction

 $\frac{-x+10}{x^2+x-12},$

how could we figure out that it *decomposes* into the sum of the smaller *partial fractions*

$$\frac{1}{x-3} - \frac{2}{x+4}?$$

イロト イヨト イヨト イヨト

Rational Functions

Recall that a rational function is one of the form

$$f(x)=\frac{P(x)}{Q(x)}$$

where *P* and *Q* are polynomials.

The function is called a proper rational function if

degree(P(x)) < degree(Q(x)).

Rational Functions

If degree(P(x)) \geq degree(Q(x)), then *f* is an **improper rational** function. In this case, we can write

$$f(x) = p(x) + \frac{r(x)}{Q(x)}$$

where *p* is a polynomial, and r(x)/Q(x) is proper. We can obtain this using long division.

$$\frac{\text{dividend}}{\text{divisor}} = \text{quotient} + \frac{\text{remainder}}{\text{divisor}}$$

January 27, 2015 9 / 45

Decomposing Proper Rational Functions

Theorem: Every polynomial Q(x) with real coefficients can be factored into a product

$$Q(x) = q_1(x)q_2(x)\cdots q_k(x)$$

where each q_i is either a linear factor (i.e. $q_i(x) = ax + b$) or an irreducible quadratic (i.e. $q_i(x) = ax^2 + bx + c$ where $b^2 - 4ac < 0$).

Knowing that such a factorization exists, and being able to compute it are two different animals! But at least we can know that the cases to be outlined cover all contingencies.

Decomposing Proper Rational Functions

Let f(x) = P(x)/Q(x) be a **proper** rational function, and let Q(x) be factored completely into linear and irreducible quadratic factors

$$f(x)=\frac{P(x)}{q_1(x)q_2(x)\cdots q_k(x)}.$$

We'll consider four cases

- (i) each factor of Q is linear and none are repeated,
- (ii) each factor of Q is linear and one or more is repeated,
- (iii) some factor(s) of Q are quadratic, but no quadratic is repeated,
- (iv) Q has at least one repeated quadratic factor.

Case (i) Non-repeated Linear Factors

Suppose $Q(x) = (a_1x + b_1)(a_2x + b_2) \cdots (a_kx + b_k)$. And no pair of *a*'s and *b*'s (both) match. Then we look for a decomposition of *f* in the form

$$\frac{P(x)}{Q(x)} = \frac{A_1}{a_1 x + b_1} + \frac{A_2}{a_2 x + b_2} + \dots + \frac{A_k}{a_k x + b_k}$$

For example

$$\frac{10-x}{(x-3)(x+4)} = \frac{A}{x-3} + \frac{B}{x+4}.$$

Note that each fraction in the expansion is a proper rational function with denominator a line.

Example: Evaluate the integral

$$\int \frac{4x-2}{x^3-x} dx$$

$$\frac{4x-2}{x^3-x} = \frac{4x-2}{x(x^2-1)} = \frac{4x-2}{x(x^2-1)(x+1)}$$

$$= \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1} + \frac{1}{x^2-x}$$
(Lear frections:

$$4x-2 = A(x-1)(x+1) + Bx(x+1) + (x(x-1))$$

$$= A(x^2-1) + B(x^2+x) + C(x^2-x)$$

$$Ox^2 + 4x - Z = (A+B+C)x^2 + (B-C)x - A$$

January 27, 2015 13 / 45

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

 $2B=2 \implies B=1$ $I-C=4 \implies C=-3$

$$\int \frac{4x-2}{x^{3}-x} dx = \int \left(\frac{2}{x} + \frac{1}{x-1} - \frac{3}{x+1}\right) dx$$

= Zluixi + luix-11-3lu/x+11 + C

$$4x-2 = A(x-1)(x+1) + Bx(x+1) + Cx(x-1)$$

Sub $x=0$

$$-2 = A(-1)(1) \implies A=2$$

 $x = 1$
 $4-2 = B(1)(2) \implies B=1$
 $x=-1$
 $-4-2 = C(-1)(-2) \implies C=-3$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

Case (ii) A Repeated Linear Factor

Suppose Q(x) has only linear factors, but that one of them is repeated. That is, suppose $(a_i x + b_i)^n$ is a factor of Q. Then for this term, the decomposition of f will contain the n terms

$$\frac{A_{i1}}{a_i x + b_i} + \frac{A_{i2}}{(a_i x + b_i)^2} + \dots + \frac{A_{in}}{(a_i x + b_i)^n}$$

For example,

$$\frac{3x^2+2x-1}{(x+1)^2(x-2)^3} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-2} + \frac{D}{(x-2)^2} + \frac{E}{(x-2)^3}$$

January 27, 2015 16 / 45