February 3 MATH 1112 sec. 54 Spring 2020

Exponential Functions

Definition: Let *a* be a positive real number different from 1—i.e. a > 0 and $a \neq 1$. The function

$$f(x) = a^x$$

is called the **exponential function of base** *a*. Its domain is $(-\infty, \infty)$, and its range is $(0, \infty)$.

Some examples of exponential functions are

$$f(x) = 2^x$$
, $g(x) = \left(\frac{1}{3}\right)^x$, and $h(x) = \pi^{x-1}$

January 31, 2020 1/26

< ロ > < 同 > < 回 > < 回 >

The Logarithm Function of Base a

Definition: Let a > 0 and $a \neq 1$. For x > 0 define $\log_a(x)$ as a number such that

if
$$y = \log_a(x)$$
 then $x = a^y$.

The function

$$F(x) = \log_a(x)$$

is called the **logarithm function of base** *a*. It has domain $(0, \infty)$, range $(-\infty, \infty)$, and if $f(x) = a^x$ then

$$F(x)=f^{-1}(x).$$

January 31, 2020 2/26

Composition of Exponentials and Logarithms

Let a > 0 and $a \neq 1$

For every real number x

 $\log_a(a^x) = x$

For every x > 0

$$a^{\log_a(x)} = x$$

Recall that for a one to one function *f* with inverse f^{-1}

 $(f \circ f^{-1})(x) = x$ and $(f^{-1} \circ f)(x) = x$.

January 31, 2020 3/26

Graph of Logarithms

Figure: The graph of a logarithm can be obtained from the graph of an exponential by reflection in the line y = x. There are two cases depending on whether 0 < a < 1 or a > 1.

Image: A matrix

Recall: $y = \log_a(x)$ means $x = a^y$.

If
$$y = \log_3\left(\frac{1}{9}\right)$$
, then

(a)
$$y = \frac{1}{2}$$

(b)
$$y = -\frac{1}{2}$$

(C)

(d) y is undefined.

= -2

Evaluating Logs with a Calculator

Most logarithms can't be evaluated by hand. For example, $\log_e(70) \approx 4.2485$. No one memorizes that! Calculators tend to have two built in logarithm functions.

- Common Log base 10 denoted as log (note there is no subscript), and
- Natural Log base e denoted¹ In

In Calculus, you'll find that the prefered base is e—the natural log. Base 10 logs still have some use such as in the Richter scale used to measure earthquakes.

¹The order LN instead of NL is probably due to the French name *le Logarithme Naturel* for this log.

Evaluating Logs with a Calculator

Theorem: (Change of Base) Let a, b, and M be any positive numbers. then

$$\operatorname{og}_b(M) = \frac{\log_a(M)}{\log_a(b)}$$

What this says is that you can turn a log₂ problem into a log or In problem, and use your machine!

Example:

 $\log_2(15) = \frac{\ln(15)}{\ln(2)} \approx 3.9069$ (courtesy of TI-84).

January 31, 2020

7/26

Here's the meat of our theorem again:
$$\log_b(M) = \frac{\log_a(M)}{\log_a(b)}$$
.

Suppose you wish to evaluate $\log_{\pi}(42)$ using a calculator. Which of the following expressions could be used to find the desired value?

8/26

Properties of Exponentials and Logarithms

Let a > 0, with $a \neq 1$. Then for any real x and y

- Exponential of a Sum: $a^{x+y} = a^x \cdot a^y$
- Exponential of a Difference: $a^{x-y} = \frac{a^x}{a^y}$
- Power of an Exponential: $(a^x)^y = a^{xy}$

January 31, 2020

9/26

Properties of Exponentials and Logarithms

Let a > 0, with $a \neq 1$. Then for any real, positive numbers *M* and *N* and for any rational number *p*

イロト 不得 トイヨト イヨト 二日

January 31, 2020

10/26

• Log of Product: $\log_a(MN) = \log_a(M) + \log_a(N)$

► Log of Quotient:
$$\log_a\left(\frac{M}{N}\right) = \log_a(M) - \log_a(N)$$

• Log of Power:
$$\log_a(M^p) = p \log_a(M)$$

Here's the meat of our theorem: $\log_a(MN) = \log_a(M) + \log_a(N)$. Which of the following is equivalent to $log_3(15)$?

(a)
$$\log_{3}(5) + \log_{3}(3)$$

(b) $\log_{3}(10) + \log_{3}(5)$
(c) $\log_{3}(10) + \log_{3}(5)$
(c) $\log_{3}(5, 3) = \log_{3}(5) + \log_{3}(3)$

イロト 不得 トイヨト イヨト ヨー ろくの January 31, 2020

11/26

(c) $\log_3(3) \cdot \log_3(5)$

(d) all of the above are equivalent

(e) none of the above is equivalent

Here's the meat of our theorem: $\log_a(M^p) = p \log_a(M)$.

Which of the following is equivalent to $\log_7(125)$?

(a)
$$5 \log_7(25)$$

(b) $3 \log_7(5)$
(c) $(\log_7(5))^3$
(a) $5 \log_7(25)$
 $\int_{0} \sqrt{3} = 3 \int_{0} \sqrt{5} \sqrt{5}$

January 31, 2020

12/26

(d) all of the above are equivalent

(e) none of the above is equivalent

Here's the meat of our theorem: $\log_a\left(\frac{M}{N}\right) = \log_a(M) - \log_a(N)$.

Which of the following is equivalent to $log_3(5)$?

(a)
$$\log_{3}(15) - \log_{3}(3)$$

(b) $\log_{3}(10) - \log_{3}(5)$
(c) $\frac{\log_{3}(15)}{\log_{3}(3)}$
 $\int o_{3}(5) = \int o_{3}(15) - \int o_{3}(3)$

- 34

13/26

January 31, 2020

- (d) all of the above are equivalent
- (e) none of the above is equivalent

Properties of logarithms are sometimes confused with erroneous, somewhat look-alike expressions. Which of the following is FALSE?

(a)
$$\ln(xy) = (\ln x)(\ln y)$$

(b)
$$\log_2(x) = \ln(x^2)$$

(c)
$$\log_4(2+7) = \log_4(2) + \log_4(7)$$

(d)
$$(\log(10))^5 = \log(10^5)$$

(e) All of the above are false.

Assume each expression is well defined.

(i) Change of base:
$$\log_b(M) = \frac{\log_a(M)}{\log_a(b)}$$

(ii) Log of Product: $\log_a(MN) = \log_a(M) + \log_a(N)$

(iii) Log of Power: $\log_a(M^p) = p \log_a(M)$

(iv) Log of Quotient:
$$\log_a\left(\frac{M}{N}\right) = \log_a(M) - \log_a(N)$$

(v) Inverse Function: $a^{\log_a(x)} = x$ and $\log_a(a^x) = x$

(vi) Special Values: $\log_a(1) = 0$, $\log_a(a) = 1$, and $\log_a(0)$ is never defined.

イロト 不得 トイヨト イヨト 二日