February 3 MATH 1112 sec. 54 Spring 2020

Exponential Functions

Definition: Let a be a positive real number different from 1-i.e. $a>0$ and $a \neq 1$. The function

$$
f(x)=a^{x}
$$

is called the exponential function of base a. Its domain is $(-\infty, \infty)$, and its range is $(0, \infty)$.

Some examples of exponential functions are

$$
f(x)=2^{x}, \quad g(x)=\left(\frac{1}{3}\right)^{x}, \quad \text { and } \quad h(x)=\pi^{x-1}
$$

The Logarithm Function of Base a

Definition: Let $a>0$ and $a \neq 1$. For $x>0$ define $\log _{a}(x)$ as a number such that

$$
\text { if } y=\log _{a}(x) \text { then } x=a^{y}
$$

The function

$$
F(x)=\log _{a}(x)
$$

is called the logarithm function of base a. It has domain $(0, \infty)$, range $(-\infty, \infty)$, and if $f(x)=a^{x}$ then

$$
F(x)=f^{-1}(x)
$$

Composition of Exponentials and Logarithms

Let $a>0$ and $a \neq 1$

For every real number x

$$
\log _{a}\left(a^{x}\right)=x
$$

For every $x>0$

$$
a^{\log _{a}(x)}=x
$$

Recall that for a one to one function f with inverse f^{-1}

$$
\left(f \circ f^{-1}\right)(x)=x \quad \text { and } \quad\left(f^{-1} \circ f\right)(x)=x
$$

Graph of Logarithms

Figure: The graph of a logarithm can be obtained from the graph of an exponential by reflection in the line $y=x$. There are two cases depending on whether $0<a<1$ or $a>1$.

Question

Recall: $y=\log _{a}(x)$ means $x=a^{y}$.
If $y=\log _{3}\left(\frac{1}{9}\right)$, then
(a) $y=\frac{1}{2}$
(b) $y=-\frac{1}{2}$
(c) $y=-2$
(d) y is undefined.

Evaluating Logs with a Calculator

Most logarithms can't be evaluated by hand. For example, $\log _{e}(70) \approx 4.2485$. No one memorizes that! Calculators tend to have two built in logarithm functions.

- Common Log base 10 denoted as log (note there is no subscript), and
- Natural Log base e denoted ${ }^{1}$ In

In Calculus, you'll find that the prefered base is e-the natural log. Base 10 logs still have some use such as in the Richter scale used to measure earthquakes.

[^0]
Evaluating Logs with a Calculator

Theorem: (Change of Base) Let a, b, and M be any positive numbers, then

$$
\log _{b}(M)=\frac{\log _{a}(M)}{\log _{a}(b)} .
$$

What this says is that you can turn a $\log _{2}$ problem into a log or In problem, and use your machine!

Example:

$$
\log _{2}(15)=\frac{\ln (15)}{\ln (2)} \approx 3.9069 \quad \text { (courtesy of TI-84). }
$$

Question

Here's the meat of our theorem again: $\log _{b}(M)=\frac{\log _{a}(M)}{\log _{a}(b)}$.

Suppose you wish to evaluate $\log _{\pi}(42)$ using a calculator. Which of the following expressions could be used to find the desired value?
(a) $\frac{\log (42)}{\log (\pi)}$

$$
\log _{\pi}(42)=\frac{\log (42)}{\log (\pi)}
$$

(b) $\ln \left(\frac{42}{\pi}\right)$
(c) $\frac{\ln (\pi)}{\ln (42)}$
(d) $\ln \left(\frac{\pi}{42}\right)$

Properties of Exponentials and Logarithms

Let $a>0$, with $a \neq 1$. Then for any real x and y

- Exponential of a Sum: $a^{x+y}=a^{x} \cdot a^{y}$
- Exponential of a Difference: $a^{x-y}=\frac{a^{x}}{a^{y}}$
- Power of an Exponential: $\left(a^{x}\right)^{y}=a^{x y}$

Properties of Exponentials and Logarithms

Let $a>0$, with $a \neq 1$. Then for any real, positive numbers M and N and for any rational number p

- Log of Product: $\log _{a}(M N)=\log _{a}(M)+\log _{a}(N)$
- Log of Quotient: $\log _{a}\left(\frac{M}{N}\right)=\log _{a}(M)-\log _{a}(N)$
- Log of Power: $\log _{a}\left(M^{p}\right)=p \log _{a}(M)$

Question

Here's the meat of our theorem: $\log _{a}(M N)=\log _{a}(M)+\log _{a}(N)$.
Which of the following is equivalent to $\log _{3}(15)$?
(a) $\log _{3}(5)+\log _{3}(3)$

$$
\begin{aligned}
& 15=5 \cdot 3 \\
& \log _{3}(5 \cdot 3)=\log _{3}(5)+\log _{3}(3)
\end{aligned}
$$

(b) $\log _{3}(10)+\log _{3}(5)$
(c) $\log _{3}(3) \cdot \log _{3}(5)$
(d) all of the above are equivalent
(e) none of the above is equivalent

Question

Here's the meat of our theorem: $\log _{a}\left(M^{p}\right)=p \log _{a}(M)$.
Which of the following is equivalent to $\log _{7}(125)$?
(a) $5 \log _{7}(25)$

$$
\begin{gathered}
12 s=5^{3} \\
\log _{7}\left(s^{3}\right)=3 \log _{7}(5)
\end{gathered}
$$

(b) $\beta \log _{7}(5)$
(c) $\left(\log _{7}(5)\right)^{3}$
(d) all of the above are equivalent
(e) none of the above is equivalent

Question

Here's the meat of our theorem: $\log _{a}\left(\frac{M}{N}\right)=\log _{a}(M)-\log _{a}(N)$.
Which of the following is equivalent to $\log _{3}(5)$?
(a) $\log _{3}(15)-\log _{3}(3)$

$$
s=\frac{15}{3}
$$

(b) $\log _{3}(10)-\log _{3}(5)$

$$
\log _{3}(5)=\log _{3}\left(\frac{15}{3}\right)
$$

(c) $\frac{\log _{3}(15)}{\log _{3}(3)}$

$$
=\log _{3}(15)-\log _{3}(3)
$$

(d) all of the above are equivalent
(e) none of the above is equivalent

Question

Properties of logarithms are sometimes confused with erroneous, somewhat look-alike expressions.
Which of the following is FALSE?
(a) $\ln (x y)=(\ln x)(\ln y)$
(b) $\log _{2}(x)=\ln \left(x^{2}\right)$
(c) $\log _{4}(2+7)=\log _{4}(2)+\log _{4}(7)$
(d) $(\log (10))^{5}=\log \left(10^{5}\right)$
(e) All of the above are false.

Assume each expression is well defined.
(i) Change of base: $\log _{b}(M)=\frac{\log _{a}(M)}{\log _{a}(b)}$
(ii) Log of Product: $\log _{a}(M N)=\log _{a}(M)+\log _{a}(N)$
(iii) \log of Power: $\log _{a}\left(M^{p}\right)=p \log _{a}(M)$
(iv) Log of Quotient: $\log _{a}\left(\frac{M}{N}\right)=\log _{a}(M)-\log _{a}(N)$
(v) Inverse Function: $a^{\log _{a}(x)}=x$ and $\log _{a}\left(a^{x}\right)=x$
(vi) Special Values: $\log _{a}(1)=0, \log _{a}(a)=1$, and $\log _{a}(0)$ is never defined.

[^0]: ${ }^{1}$ The order LN instead of NL is probably due to the French name le Logarithme Naturel for this log.

