February 3 Math 3260 sec. 51 Spring 2020

Section 1.9: The Matrix for a Linear Transformation

Elementary Vectors: We'll use the notation \mathbf{e}_{i} to denote the vector in \mathbb{R}^{n} having a 1 in the $i^{t h}$ position and zero everywhere else. e.g. in \mathbb{R}^{2} the elementary vectors are

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

in \mathbb{R}^{3} they would be

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

and so forth.
Note that in \mathbb{R}^{n}, the elementary vectors are the columns of the identity I_{n}.

Matrix of Linear Transformation

Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{4}$ be a linear transformation, and suppose

$$
T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}
0 \\
1 \\
-2 \\
4
\end{array}\right], \quad \text { and } \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
6
\end{array}\right] .
$$

Use the fact that T is linear, and the fact that for each \mathbf{x} in \mathbb{R}^{2} we have

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=x_{2} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}
$$

to find a matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for every } \quad \mathbf{x} \in \mathbb{R}^{2} .
$$

$$
\begin{aligned}
& T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}
0 \\
1 \\
-2 \\
4
\end{array}\right], \quad \text { and } \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
6
\end{array}\right] \\
& T(\vec{x})=T\left(x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}\right) \\
&=x_{1} T\left(\vec{e}_{1}\right)+x_{2} T\left(\vec{e}_{2}\right) \\
&=x_{1}\left[\begin{array}{c}
0 \\
1 \\
-2 \\
4
\end{array}\right]+x_{2}\left[\begin{array}{c}
1 \\
-1 \\
6
\end{array}\right] \\
&=\left[\begin{array}{cc}
0 & 1 \\
1 & 1 \\
-2 & -1 \\
4 & 6
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

since T is a lineer Tronsformation

Letting $A=\left[\begin{array}{cc}0 & 1 \\ 1 & 1 \\ -2 & -1 \\ 4 & 6\end{array}\right]$, then A is a 4×2 matrix such that

$$
T(\vec{x})=A \vec{x}
$$

for ans \vec{x} in \mathbb{R}^{2}.

Theorem

Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. There exists a unique $m \times n$ matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for every } \quad \mathbf{x} \in \mathbb{R}^{n} .
$$

Moreover, the $j^{\text {th }}$ column of the matrix A is the vector $T\left(\mathbf{e}_{j}\right)$, where \mathbf{e}_{j} is the $j^{\text {th }}$ column of the $n \times n$ identity matrix I_{n}. That is,

$$
A=\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right] .
$$

The matrix A is called the standard matrix for the linear transformation T.

Example
Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the scaling trasformation (contraction or dilation for $r>0$) defined by

$$
T(\mathbf{x})=r \mathbf{x}, \quad \text { for positive scalar } r
$$

Find the standard matrix for T.

$$
A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right)\right]
$$

Here, were in \mathbb{R}^{2} so $\vec{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\vec{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

$$
\begin{aligned}
& T\left(\vec{e}_{1}\right)=r \vec{e}_{1}=r\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
r \\
0
\end{array}\right] \text { and } \\
& T\left(\vec{e}_{2}\right)=r \vec{e}_{2}=r\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
r
\end{array}\right] .
\end{aligned}
$$

So the standard matrix

$$
A=\left[\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right]
$$

Let's confirm:

$$
\begin{aligned}
& \text { Let } \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& A \vec{x}=\left[\begin{array}{cc}
r & 0 \\
0 & r
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
r x_{1}+o x_{2} \\
o x_{1}+r x_{2}
\end{array}\right]=\left[\begin{array}{l}
r x_{1} \\
r x_{2}
\end{array}\right] \\
& =r \vec{x}
\end{aligned}
$$

Example

Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the rotation transformation that rotates each point in \mathbb{R}^{2} counter clockwise about the origin through an angle ϕ. Find the standard matrix for T.

Using some basic trigonometry, the points on the unit circle

$$
\begin{aligned}
T\left(\mathbf{e}_{1}\right) & =(\cos \phi, \sin \phi) \\
T\left(\mathbf{e}_{2}\right) & =\left(\cos \left(90^{\circ}+\phi\right), \sin \left(90^{\circ}+\phi\right)\right) \\
& =(-\sin \phi, \cos \phi) \\
\text { So } A & =\left[\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right] .
\end{aligned}
$$

Example ${ }^{1}$

Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the projection transformation that projects each point onto the x_{1} axis

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right] .
$$

Find the standard matrix for T.

${ }^{1}$ See pages 73-75 in Lay for matrices associated with other geometric tranformation on \mathbb{R}^{2}

$$
\begin{aligned}
& \vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and } \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& T\left(\vec{e}_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& T\left(\vec{e}_{2}\right)=T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

The standard matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

The Property Onto

Definition: A mapping $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be onto \mathbb{R}^{m} if each \mathbf{b} in \mathbb{R}^{m} is the image of at least one \mathbf{x} in \mathbb{R}^{n}-i.e. if the range of T is all of the codomain.

If $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is an onto transformation, then the equation

$$
T(\mathbf{x})=\mathbf{b}
$$

is always solvable. If T is a linear transformation with standard matrix A, then this is equivalent to saying $A \mathbf{x}=\mathbf{b}$ is always consistent.

Determine if the transformation is onto.

$$
\begin{aligned}
& T(\mathbf{x})=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right] \mathbf{x} . \\
& \text { con } \\
& \text { this } A \text { is } 2 \times 3 \text {, so } T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}
\end{aligned}
$$

Is $A \vec{x}=\vec{b}$ consistent for every \vec{b} in \mathbb{R}^{2} ?
Let $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$. An augment matrix is

$$
\left[\begin{array}{llll}
1 & 0 & 2 & b_{1} \\
0 & 1 & 3 & b_{2}
\end{array}\right]_{5^{0}} 0^{a} \omega^{\omega^{k}}
$$

Yes, $A \vec{x}=\vec{b}$ is always consistent. That is \vec{b} is in the cease of T for every \vec{b} in \mathbb{R}^{2}.
T is onto.

The Property One to One

Definition: A mapping $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be one to one if each b in \mathbb{R}^{m} is the image of at most one \mathbf{x} in \mathbb{R}^{n}.

If $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a one to one transformation, then the equation $T(\mathbf{x})=T(\mathbf{y})$ is only true when $\mathbf{x}=\mathbf{y}$.

Determine if the transformation is one to one.

$$
T(\mathbf{x})=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right] \mathbf{x} .
$$

Does $T(\vec{x})=T(\vec{y})$ imply the $\vec{x}=\vec{y}$?
Suppose $T(\vec{x})=T(\vec{y})$. Since T is linear

$$
\begin{aligned}
T(\vec{x})=T(\vec{y}) & \Rightarrow T(\vec{x})-T(\vec{y})=\overrightarrow{0} \\
& \Rightarrow T(\vec{x}-\vec{y})=\overrightarrow{0}
\end{aligned}
$$

Consider the homosereocis equation $T(\vec{z})=\overrightarrow{0}$ (node $\vec{z}=\vec{x}-\vec{y})$

An augmented matrix for $A \vec{z}=\overline{0}$ is
$\left[\begin{array}{llll}1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0\end{array}\right]$ we have two pivot columns and ore non-pivot.
$z_{1}=-2 z_{3}$
$z_{2}=-3 z_{3}$ z_{3}-free

Ans $\vec{z}=z_{3}\left[\begin{array}{c}-2 \\ -3 \\ 1\end{array}\right]$ is a solution
$\vec{x}-\vec{b}$ need not be zero!
we've found infinitely many solutions to $T(\vec{z})=\overrightarrow{0}$, Hence T is not one to one.

Some Theorems on Onto and One to One

Theorem: Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. Then T is one to one if and only if the homogeneous equation $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Theorem: Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation, and let A be the standard matrix for T. Then
(i) T is onto if and only if the columns of A span \mathbb{R}^{m}, and
(ii) T is one to one if and only if the columns of A are linearly independent.

$$
\rightarrow \text { for onto check } A \vec{x}=Z_{0} \text { for consistency }
$$

for onetoone check $A \vec{x}=\overrightarrow{0}$ for nontrivial soln.

Example
Let $T\left(x_{1}, x_{2}\right)=\left(x_{1}, 2 x_{1}-x_{2}, 3 x_{2}\right)$. Verify that T is one to one. Is T onto?

$$
T: \mathbb{R}^{2} \Rightarrow \mathbb{R}^{3}
$$

$$
\begin{aligned}
T\left(\vec{e}_{1}\right) & =T(1,0)=(1,2,0) \text { so the matrix } \\
T\left(\vec{e}_{2}\right) & =T(0,1)=(0,-1,3) \\
A & =\left[\begin{array}{cc}
1 & 0 \\
2 & -1 \\
0 & 3
\end{array}\right]
\end{aligned}
$$

Check to see if T is one to one.
Consider $A \vec{x}=\overrightarrow{0}$ (no fire variables - one to one)

Using an augmented matrix

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & -1 & 0 \\
0 & 3 & 0
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

There are no free variables $A \vec{x}=\overrightarrow{0}$ if and only if $\vec{x}=\overrightarrow{0}$

The mapping is one to one.

Is Tonto?
Is $A \vec{x}=\vec{b}$ always consistent?
ut $\vec{L}_{0}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$

$$
\left[\begin{array}{ccc}
1 & 0 & b_{1} \\
2 & -1 & b_{2} \\
0 & 3 & b_{3}
\end{array}\right] \xrightarrow{\text { bret }}\left[\begin{array}{ccc}
1 & 0 & b_{1} \\
0 & 1 & 2 b_{1}-b_{2} \\
0 & 0 & 6 b_{1}-3 b_{2}-b_{3}
\end{array}\right]
$$

The $3^{\text {rd }}$ column is a pivot
Column except when $6 b_{1}-3 b_{2}-b_{3}=0$
So $A \vec{x}=\vec{b}_{0}$ is only consistent when $b_{1}=\frac{1}{2} b_{2}+\frac{1}{6} b_{3}$.
Since $T(\vec{x})=\vec{b}$ is not
always consistent, T is not onto.

To. recap, $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \longmapsto\left[\begin{array}{cc}
x_{1} & \\
2 x_{1} & -x_{2} \\
3 x_{2}
\end{array}\right]
$$

has stand ard matrix

$$
A=\left[\begin{array}{cc}
1 & 0 \\
2 & -1 \\
0 & 3
\end{array}\right]
$$

It is one to one, but it is not onto.

