February 4 Math 2306 sec. 54 Spring 2019

Section 4: Exact Equations

If $M(x, y) d x+N(x, y) d y=0$ happens to be exact, then it is equivalent to

$$
\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y=0
$$

This implies that the function F is constant on R and solutions to the
DE are given by the relation

$$
F(x, y)=C
$$

Exact Equations

Theorem: Let M and N be continuous on some rectangle R in the plane. Then the equation

$$
M(x, y) d x+N(x, y) d y=0
$$

is exact if and only if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Special Integrating Factors

Suppose that the equation $M d x+N d y=0$ is not exact. Clearly our approach to exact equations would be fruitless as there is no such function F to find. It may still be possible to solve the equation if we can find a way to morph it into an exact equation. As an example, consider the DE

$$
(2 y-6 x) d x+\left(3 x-4 x^{2} y^{-1}\right) d y=0
$$

Note that this equation is NOT exact. In particular

$$
\frac{\partial M}{\partial y}=2 \neq 3-8 x y^{-1}=\frac{\partial N}{\partial x} .
$$

Special Integrating Factors

But note what happens when we multiply our equation by the function $\mu(x, y)=x y^{2}$.

$$
\left.\begin{array}{l}
x y^{2}(2 y-6 x) d x+x y^{2}\left(3 x-4 x^{2} y^{-1}\right) d y=0, \quad \Longrightarrow \\
\left(2 x y^{3}-6 x^{2} y^{2}\right) d x+\left(3 x^{2} y^{2}-4 x^{3} y\right) d y=0 \\
\frac{\partial(\mu M)}{\partial y}=6 x y^{2}-12 x^{2} y \quad \\
\frac{\partial(\mu N)}{\partial x}=6 x y^{2}-12 x^{2} y
\end{array}\right\} \begin{aligned}
& \text { equd } \text { This real }^{\text {is }} \\
& \text { equation }
\end{aligned}
$$

Special Integrating Factors

The function μ is called a special integrating factor. Finding one (assuming one even exists) may require ingenuity and likely a bit of luck. However, there are certain cases we can look for and perhaps use them to solve the occasional equation. A useful method is to look for μ of a certain form (usually $\mu=x^{n} y^{m}$ for some powers n and m). We will restrict ourselves to two possible cases:

There is an integrating faction $\mu=\mu(x)$ depending only on x, or there is an integrating factor $\mu=\mu(y)$ depending only on y.

Special Integrating Factor $\mu=\mu(x)$

Suppose that

$$
M d x+N d y=0
$$

is NOT exact, but that

$$
\mu M d x+\mu N d y=0
$$

IS exact where $\mu=\mu(x)$ does not depend on y. Then

$$
\frac{\partial(\mu(x) M)}{\partial y}=\frac{\partial(\mu(x) N)}{\partial x}
$$

Let's use the product rule in the right side.

Special Integrating Factor $\mu=\mu(x)$

$$
\frac{\partial(\mu(x) M)}{\partial y}=\frac{\partial(\mu(x) N)}{\partial x} .
$$

$$
\begin{array}{rlrl}
\frac{\partial(\mu M)}{\partial y} & =\frac{\partial \mu}{\partial y} M+\mu \frac{\partial M}{\partial y} & & \text { Product rule } \\
& =0 \cdot M+\mu \frac{\partial M}{\partial y} & & \mu=\mu(x) \text { so } \frac{\partial}{\partial y} \mu=0 \\
& =\mu \frac{\partial M}{\partial y} &
\end{array}
$$

$$
\begin{aligned}
\frac{\partial(\mu N)}{\partial x} & =\frac{\partial \mu}{\partial x} N+\mu \frac{\partial N}{\partial x} \\
& =\frac{d \mu}{d x} N+\mu \frac{\partial N}{\partial x}
\end{aligned}
$$

product rule

$$
\frac{\partial \mu}{\partial x}=\frac{d \mu}{d x} \sin \mu \mu=\mu(x)
$$

$$
\begin{aligned}
\frac{d \mu}{d x} N+\mu \frac{\partial N}{\partial x} & =\mu \frac{\partial M}{\partial y} \\
\frac{d \mu}{d x} N & =\mu \frac{\partial M}{\partial y}-\mu \frac{\partial N}{\partial x} \\
& =\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \mu
\end{aligned}
$$

For $N(x, y) \neq 0$

$$
\frac{d \mu}{d x}=\left(\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}\right) \mu \quad \begin{gathered}
\text { Separable } \\
\text { ODE for }
\end{gathered}
$$

This ODE is solvable for $\mu(x)$ only if the coefficient depends only on x.

In this case, we solve for μ and get

$$
\mu=\exp \left(\int \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N} d x\right)
$$

Special Integrating Factor

$$
\begin{equation*}
M d x+N d y=0 \tag{1}
\end{equation*}
$$

Theorem: If $(\partial M / \partial y-\partial N / \partial x) / N$ is continuous and depends only on x, then

$$
\mu=\exp \left(\int \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N} d x\right)
$$

is an special integrating factor for (1). If $(\partial N / \partial x-\partial M / \partial y) / M$ is continuous and depends only on y, then

$$
\mu=\exp \left(\int \frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{M} d y\right)
$$

is an special integrating factor for (1).

Example
Solve the equation $2 x y d x+\left(y^{2}-3 x^{2}\right) d y=0$.
Check for exactness: $\quad M(x, y)=2 x y$ and $N(x, y)=y^{2}-3 x^{2}$

$$
\frac{\partial M}{\partial y}=2 x \quad \frac{\partial N}{\partial x}=-6 x \quad \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}
$$

We look for an integrating factor $\mu(x)$ or $\mu(y)$

$$
x: \frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=\frac{2 x-(-6 x)}{y^{2}-3 x^{2}}=\frac{8 x}{y^{2}-3 x^{2}}
$$

There is no IF a function of x.
$y: \frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{M}=\frac{-6 x-2 x}{2 x y}=\frac{-8 x}{2 x y}=\frac{-4}{y}$
This is a function of only y.

$$
\begin{aligned}
\mu & =\exp \left(\int \frac{\frac{\partial N}{\partial x}-\frac{\partial m}{\partial y}}{M} d y\right)=e^{\int \frac{-4}{y} d y} \\
& =e^{-4 \ln |y|}=e^{\ln y^{-4}}=y^{-4}
\end{aligned}
$$

Mutably ODE by μ

$$
\begin{aligned}
y^{-4}\left(2 x y d x+\left(y^{2}-3 x^{2}\right) d y\right) & =0 \cdot y^{-4} \\
2 x y^{-3} d x+\left(y^{-2}-3 x^{2} y^{-4}\right) d y & =0
\end{aligned}
$$

Check for exactness:

$$
\begin{aligned}
& \frac{\partial(\mu M)}{\partial y}=-6 x y^{-4}=\frac{\partial(\mu N)}{\partial x}=-6 x y^{-4} \\
& \text { exact 1 }
\end{aligned}
$$

exact!
Solutions are given implicitly by $F(x, y)=C$ where

$$
\begin{gathered}
\frac{\partial F}{\partial x}=2 x y^{-3} \text { and } \frac{\partial F}{\partial y}=y^{-2}-3 x^{2} y^{-4} \\
F(x, y)=\int \frac{\partial F}{\partial x} d x=\int 2 x y^{-3} d x=x^{2} y^{-3}+g(y)
\end{gathered}
$$

January 28, $2019 \quad 13 / 47$

The "constant" of integration g could depend on y.
we need to find g. we know

$$
\frac{\partial F}{\partial y}=y^{-2}-3 x^{2} y^{-4}
$$

From $F(x, y)=x^{2} y^{-3}+g(y)$

$$
\frac{\partial F}{\partial y}=-3 x^{2} y^{-4}+g^{\prime}(y)
$$

Matching

$$
\begin{aligned}
-3 x^{2} y^{-4}+g^{\prime}(y) & =y^{-2}-3 x^{2} y^{-4} \\
g^{\prime}(y) & =y^{-2}
\end{aligned}
$$

An antiderivative is $\quad g(y)=\int y^{-2} d y=\frac{y^{-1}}{-1}=\frac{-1}{y}$
Lu pto an added constant

$$
F(x, y)=x^{2} y^{-3}-\frac{1}{y}
$$

The solutions to the ODE are inglicitly defined by

$$
x^{2} y^{-3}-\frac{1}{y}=C
$$

