February 4 Math 2306 sec 59 Spring 2016

Section 5: First Order Equations Models and Applications

Classic Mixing Problem: $r_{i}=$ inflow rate of fluid, $c_{i}=$ concentration of inflowing fluid, $r_{0}=$ outflow rate of fluid The concentration c_{o} of the outflowing fluid is

$$
\begin{gathered}
\frac{\text { total salt }}{\text { total volume }}=\frac{A(t)}{V(t)}=\frac{A(t)}{V(0)+\left(r_{i}-r_{o}\right) t} . \\
\frac{d A}{d t}=r_{i} \cdot c_{i}-r_{o} \frac{A}{V} .
\end{gathered}
$$

This equation is first order linear.

Solve the Mixing Problem

A tank originally contains 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped in at a rate of $5 \mathrm{gal} / \mathrm{min}$. The well mixed solution is pumped out at the same rate. Find the amount of salt $A(t)$ in pounds at the time t. Find the concentration of the mixture in the tank at $t=5$ minutes.

We found the amount of salt at time t to be $A(t)=1000-1000 e^{-t / 100}$ lbs , and the concentration at $t=5$ to be about $0.098 \mathrm{lb} /$ gal.

$$
r_{i} \neq r_{0}
$$

Suppose that instead, the mixture is pumped out at $10 \mathrm{gal} / \mathrm{min}$. Determine the differential equation satisfied by $A(t)$ under this new condition.

$$
\text { From before: } r_{i}=S \frac{\text { gal }}{\min }, c_{i}=2 \frac{1 b}{g^{a l}}
$$

New info: $\quad r_{0}=10 \frac{\mathrm{gal}}{\mathrm{min}}$

$$
c_{0}=\frac{A(t)}{v(t)}=\frac{A(t)}{v(0)+\left(r_{1}-r_{0}\right) t}=\frac{A(t)}{s 00+(s-10) t}
$$

$$
\begin{aligned}
& \frac{d A}{d t}=5 \cdot 2-10 \cdot \frac{A}{500-5 t} \\
& \frac{d A}{d t}+\frac{2}{100-t} A=10, \quad A(0)=0
\end{aligned}
$$

This holds for $0 \leq t<100$
at $t=100$ minutes, the take is empty

A Nonlinear Modeling Problem

A population $P(t)$ of tilapia changes at a rate jointly proportional to the current population and the difference between the constant carrying capacity ${ }^{1} \mathrm{M}$ of the environment and the current population. Determine the differential equation satsified by P.

Current Population is P
Difference between Mind P is $M-P$

$$
\frac{d P}{d t} \propto P(M-P) \text {, ie. } \quad \frac{d P}{d t}=k P(M-P)
$$

for same constant k.
${ }^{1}$ The carrying capacity is the maximum number of individuals that the environment can support due to limitation of space and resources.

Logistic Differential Equation
The equation

$$
\frac{d P}{d t}=k P(M-P), \quad k, M>0
$$

is called a logistic growth equation.
Solve this equation ${ }^{2}$ and show that for any $P(0) \neq 0, P \rightarrow M$ as $t \rightarrow \infty$.
call $P(0)=P_{0}$

$$
\begin{array}{r}
\frac{1}{P(M-P)} \frac{d P}{d t}=k \Rightarrow \int \frac{1}{P(M-P)} d P=\int k d t \\
\int \frac{1}{M}\left(\frac{1}{P}+\frac{1}{M-P}\right) d P=\int k d t
\end{array}
$$

${ }^{2}$ The partial fraction decomposition

$$
\frac{1}{P(M-P)}=\frac{1}{M}\left(\frac{1}{P}+\frac{1}{M-P}\right)
$$

is useful.

$$
\begin{aligned}
& \int\left(\frac{1}{p}+\frac{1}{M-p}\right) d p=\int k M d t \\
& \ln |p|-\ln |M-p|=k M t+C \\
& \ln \left|\frac{p}{M-p}\right|=k M t+C \\
& e^{\ln \left|\frac{p}{M-p}\right|}=e^{k M t+C}=e^{C} e^{k M t}
\end{aligned}
$$

Let $A=e^{c}$ or $A=-e^{c}$

$$
\frac{P}{M-P}=A e^{k M t}
$$

Use $P(0)=P_{0}: \frac{P_{0}}{m-P_{0}}=A e^{0}=A$
so $\quad A=\frac{P_{0}}{M-P_{0}}$

From $\frac{P}{M-P}=A e^{k M t}$, malt. by $M-P$

$$
P=A e^{k M t}(M-P)=A M e^{k M t}-A e^{k M t} P
$$

$$
\begin{aligned}
P+A e^{k M t} P & =A M e^{k M t} \\
\left(1+A e^{k M t}\right) P & =A M e^{k m t} \\
P(t) & =\frac{A M e^{k M t}}{1+A e^{k M t}}
\end{aligned}
$$

Recall

$$
A=\frac{P_{0}}{M-P_{0}}
$$

$$
\begin{gathered}
P(t)=\frac{\frac{P_{0}}{M-P_{0}} M e^{k M t}}{1+\frac{P_{0}}{M-P_{0}} e^{k M t}} \cdot\left(\frac{M-P_{0}}{M-P_{0}}\right) \\
P(t)=\frac{P_{0} M e^{k M t}}{M-P_{0}+P_{0} e^{k M t}}
\end{gathered}
$$

Let's take $t \rightarrow \infty$

$$
\lim _{t \rightarrow \infty} P(t)=\lim _{t \rightarrow \infty} \frac{P_{0} m e^{k m t}}{M-P_{0}+P_{e} e^{k m t}}=\frac{\infty}{\infty}
$$

Use l'H ospital's rule

$$
\lim _{t \rightarrow \infty} \frac{P_{0} m e^{k \mu t} \cdot k M}{P_{0} e^{k M t} \cdot k M}
$$

$$
=\lim _{t \rightarrow \infty} M=M
$$

Section 6: Linear Equations Theory and Terminology

Recall that an $n^{\text {th }}$ order linear IVP consists of an equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

to solve subject to conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1} .
$$

The problem is called homogeneous if $g(x) \equiv 0$. Otherwise it is called nonhomogeneous.

Theorem: Existence \& Uniqueness

Theorem: If a_{0}, \ldots, a_{n} and g are continuous on an interval I, $a_{n}(x) \neq 0$ for each x in I, and x_{0} is any point in I, then for any choice of constants y_{0}, \ldots, y_{n-1}, the IVP has a unique solution $y(x)$ on I.

Put differently, we're guaranteed to have a solution exist, and it is the only one there is!

Example
Use only a little clever intuition to solve the IVP

$$
y^{\prime \prime}+3 y^{\prime}-2 y=0, \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Homogeneous, $\quad a_{2}(x)=1, \quad a_{1}(x)=3, \quad a_{0}(x)=-2$

$$
g(x)=0
$$

all continuow and $a_{2}(x) \neq 0$

Note that the constant function $y(x)=0$ Solves the IVP. By our theorem, this is the only s solution to the IVP.

A Second Order Linear Boundary Value Problem

consists of a problem

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x), \quad a<x<b
$$

to solve subject to a pair of conditions ${ }^{3}$

$$
y(a)=y_{0}, \quad y(b)=y_{1}
$$

However similar this is in appearance, the existence and uniqueness result does not hold for this BVP!

[^0]
[^0]: ${ }^{3}$ Other conditions on y and/or y^{\prime} can be imposed. The key characteristic is that conditions are imposed at both end points $x=a$ and $x=b$.

