
February 4 Math 2335 sec 51 Spring 2016

Section 3.2: Newton’s Method

We wish to find a number α that is a zero of the function f (x)

Figure: We begin by making a guess x0 with the hope that α ≈ x0.

February 3, 2016 1 / 46



Newton’s Method
Next, we obtain a better approximation x1 to the true root α.

Figure: We choose x1 to be the zero of p1(x), the tangent line approximation
to f at x0.
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Formula for x1:

We assume that f (x) is differentiable on an interval containing α.
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Iterative Scheme for Newton’s Method
We start with a guess x0. Then set

x1 = x0 −
f (x0)

f ′(x0)
.

Similarly, we can find a tangent to the graph of f at (x1, f (x1)) and
update again

x2 = x1 −
f (x1)

f ′(x1)
.

Newton’s Iteration Formula

xn+1 = xn −
f (xn)

f ′(xn)
, n = 1,2,3, . . .

The sequence begins with a starting guess x0 expected to be near
the desired root.
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Exit Strategy for Newton’s Method

Newton’s method may or may not converge on the solution α. 1 Since
we hope that xn is getting closer and closer to α, we generally stop
when either

|xn+1 − xn| < ε

or when
n ≥ N

where ε is some error tolerance and N is some predetermined
maximum number of iterations.

If the latter condition is used to stop the process, the method is
probably not working.

1More on this important issue later!
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Example

Consider finding the real solution α of the equation

x3 = x2 + x + 1.

(a) Define an appropriate function f (x) that has α as a root.
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Example: x3 = x2 + x + 1

(b) Determine the Newton Iteration formula for this problem.
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Example: x3 = x2 + x + 1

(c) Take x0 = 2 and compute x1 and x2.
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Example: x3 = x2 + x + 1 TI-89

Figure: From the home window 2 [sto ] x [enter], y1(x) [sto ] x [enter], repeat.
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Example: x3 = x2 + x + 1 TI-84
Use [Y=]. To access variables Yi , hit [vars], select [Y-VARS], select
[Function..], select desired Yi .

Figure: Set up Y1 = x3 − x2 − x − 1, Y2 = 3x2 − 2x − 1 and Y3 = x − Y1/Y2.
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Example: x3 = x2 + x + 1 TI-84

Figure: From the home screen 2 [sto ] X [enter], then Y3 [sto] X [enter]. Keep
hitting [enter].
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Example: x3 = x2 + x + 1

Produced with Matlab with a tolerance of ε = 10−8.

n xn |xn+1 − xn| f (xn)

0 2.0000000000 0.1428571428 1.0000000000
1 1.8571428571 0.0175983436 0.0991253644
2 1.8395445134 0.0002577038 0.0014103289
3 1.8392868100 0.0000000548 0.0000003000
4 1.8392867552 0.0000000000 0.0000000000
5 1.8392867552 0.0000000000

Newton’s method finds the root to within 10−8 in 5 full iterations.
Compare this to the 27 iterates needed for the bisection method!
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Computing Reciprocals without Division
Early computers (and even some supercomputers used today) did not
compute with the operation ÷. We consider a method for producing a
reciprocal

1
b

for a known nonzero number b

that relies only on the operations +, −, and ×.

Let f (x) = b − 1
x . Then f is continuously differentiable for x > 0 and

f
(

1
b

)
= 0 i.e. α =

1
b

is the unique zero of f .
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Example: Computing Reciprocal
Find the Newton’s method iteration formula for solving f (x) = 0 where
f (x) = b− 1

x and b > 0 is some constant. Reduce the formula so that it
only entails the operations +, −, and ×.
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Example: Computing Reciprocal
From the iteration formula xn+1 = 2xn − bx2

n show that the relative
error2satisfies

Rel(xn+1) = [Rel(xn)]
2.

2Recall that the relative error in xk is

Rel(xk ) =
α− xk

α
.
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Example: Computing Reciprocal
Use this result to conclude that Newton’s method will only converge to
the true root (with any given tolerance) if

0 < x0 <
2
b
.
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Example: Computing Reciprocal

Figure: Illustration of using Newton’s method to compute the reciprocal 1/b.
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Example: Computing Reciprocal

Computing the reciprocal of the number e.

n xn |xn+1 − xn| f (xn)

0 0.5000 0.1796 0.7183
1 0.3204 0.0413 −0.4025
2 0.3618 0.0060 −0.0460
3 0.3678 0.0001 −0.0008
4 0.3679 0.0000 −0.0000
5 0.3679 0.0000 −0.0000
6 0.3679 0.0000

Six iterations are required with an initial guess of x0 = 0.5 and a
tolerance of ε = 10−8.
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Example: Computing Reciprocal

Computing the reciprocal of the number e.

n xn |xn+1 − xn| f (xn)

0 0.7500 0.7790 1.3849
1 −0.0290 0.0313 37.1612
2 −0.0604 0.0703 19.2860
3 −0.1306 0.1770 10.3741
4 −0.3076 0.5648 5.9691
5 −0.8725 2.9416 3.8645
6 −3.8141 43.3572 2.9805

The same six iterations with an initial guess of x0 = 0.75 produces
garbage results.
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Error Analysis: Newton’s Method

Suppose that f has at least two derivatives on an interval containing α
and that

f ′(α) 6= 0.

By Taylor’s Theorem, we can write

f (α) = f (xn) + (α− xn)f ′(xn) +
1
2
(α− xn)

2f ′′(cn)

where cn is some number between α and xn.
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Error Analysis: Newton’s Method

f (α) = f (xn) + (α− xn)f ′(xn) +
1
2
(α− xn)

2f ′′(cn)

From this, let’s show that Err(xn+1) is proportional to [Err(xn)]
2.
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Error Analysis: Newton’s Method

f (α) = f (xn) + (α− xn)f ′(xn) +
1
2
(α− xn)

2f ′′(cn)

Recalling that f (α) = 0, divide both sides by f ′(xn) to get

0 =
f (xn)

f ′(xn)
+ α− xn +

1
2
(α− xn)

2 f ′′(cn)

f ′(xn)
=⇒

α−
(

xn −
f (xn)

f ′(xn)

)
= − f ′′(cn)

2f ′(xn)
(α− xn)

2 =⇒

α− xn+1 = − f ′′(cn)

2f ′(xn)
(α− xn)

2
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Error Analysis: Newton’s Method

Err(xn+1) = α− xn+1 = Kn(α− xn)
2 = Kn[Err(xn)]

2

where

Kn = − f ′′(cn)

2f ′(xn)
.

If α and xn are very close together, then

− f ′′(cn)

2f ′(xn)
≈ − f ′′(α)

2f ′(α)
≡ M.

Thus

α− xn+1 ≈ M(α− xn)
2 =⇒ M(α− xn+1) ≈ [M(α− xn)]

2.
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Error Analysis: Newton’s Method

M(α− xn+1) ≈ [M(α− xn)]
2

Note what condition this gives on the error at the nth step:

M(α− x1) ≈ [M(α− x0)]
2

M(α− x2) ≈ [M(α− x1)]
2 ≈ [M(α− x0)]

4

M(α− x3) ≈ [M(α− x2)]
2 ≈ [M(α− x0)]

8

...
M(α− xn) ≈ [M(α− x0)]

2n
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Error Analysis: Newton’s Method

The error is only expected to go to zero (meaning xn is converging to
α) if

|M(α− x0)| < 1 i.e. provided |α− x0| <
1
|M|

=
2|f ′(α)|
|f ′′(α)|

.

If |M| is very large, Newton’s method may be impractical. Or another
method such as bisection may be needed to get a starting value x0
close enough for convergence.
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Example
We wish to find the root of tan−1(x)− π

4 . (The exact solution is α = 1.)
Use the error bound formula

|α− x0| <
2|f ′(α)|
|f ′′(α)|

to determine a suitable interval for the initial guess x0.
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Example
(a) Write an iteration formula for finding the cube root of 4 based on
Newton’s method. Give the formula in simplified form.
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Example Continued...
(b) Use the quantity M defined previously to show that the error and
relative error satisfy

α− xn+1 ≈ −
1
α
(α− xn)

2, and |Rel(xn+1)| ≈ [Rel(xn)]
2
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