## February 5 MATH 1112 sec. 54 Spring 2020

## Solving Exponential and Logarithmic Equations

Base-Exponent Equality For any $a>0$ with $a \neq 1$, and for any real numbers $x$ and $y$

$$
a^{x}=a^{y} \quad \text { if and only if } x=y .
$$

Logarithm Equality For and $a>0$ with $a \neq 1$, and for any positive numbers $x$ and $y$

$$
\log _{a} x=\log _{a} y \quad \text { if and only if } \quad x=y .
$$

Example
Solve the equation $3^{2 x+1}=81$. Since $81=3^{4}$
The equation is $3^{2 x+1}=3^{4}$.

So

$$
\begin{aligned}
2 x+1 & =4 \\
2 x & =3 \\
x & =\frac{3}{2}
\end{aligned}
$$

Let's verify

$$
\begin{aligned}
& 3^{2 x+1} \text { set } x=\frac{3}{2} \\
& 3^{2(3 / 2)+1}=3^{3+1}=3^{4}=81
\end{aligned}
$$

Example
Find an exact solution ${ }^{1}$ to the equation $2^{x+1}=5^{x}$ we con use a log of any base.

Using the natwal log:

$$
\begin{aligned}
& \ln \left(2^{x+1}\right)=\ln \left(5^{x}\right) \\
& (x+1) \ln 2=x \ln s
\end{aligned}
$$

* $\ln M^{p}=p \ln M$
for $M>0$
and $P$ ration

Now, we isolate $x$

$$
x \ln 2+\ln 2=x \ln 5
$$

${ }^{1}$ An exact solution may be a number such as $\sqrt{2}$ or $\ln (7)$ which requires a calculator to approximate as a decimal.

$$
\begin{gathered}
\ln 2=x \ln 5-x \ln 2 \\
x(\ln 5-\ln 2)=\ln 2 \\
x=\frac{\ln 2}{\ln 5-\ln 2}
\end{gathered}
$$

## Graphical Solution to $2^{x+1}=5^{x}$



Figure: Plots of $y=2^{x+1}$ and $y=5^{x}$ together. The curves intersect at the solution $x=\ln 2 /(\ln 5-\ln 2) \approx 0.7565$.
Which curve is $y=2^{x+1}$, red or blue?

Log Equations \& Verifying Answers
Double checking answers is always recommended. When dealing with functions whose domains are restricted, answer verification is critical.

Use properties of logarithms to solve the equation

$$
\log (x-1)+\log (x-2)=\log 12
$$

wed like to get the form $\log (*)=\log (\phi \gg)$

$$
\begin{aligned}
\text { Recall } \log M+\log N & =\log (M N) \text { for } M, N>0 \\
\log (x-1)+\log (x-2) & =\log 12 \\
\log ((x-1)(x-2)) & =\log 12 \\
\text { so }(x-1)(x-2) & =12
\end{aligned}
$$

Now, solve this quadratic equation

$$
\begin{aligned}
& x^{2}-3 x+2=12 \\
& x^{2}-3 x-10=0
\end{aligned}
$$

This factors nicely

$$
\begin{aligned}
& (x-5)(x+2)=0 \\
& x-5=0 \Rightarrow x=5 \\
& x+2=0 \Rightarrow x=-2
\end{aligned}
$$

we hove to check whether these solve the origind $\log$ equation.

$$
\log (x-1)+\log (x-2)=\log 12
$$

February 5, $2020 \quad 8 / 14$

Check $x=S$

$$
\begin{aligned}
& \log (s-1)+\log (s-2)= \\
& \log 4+\log 3= \\
& \log (4 \cdot 3)=\log 12
\end{aligned} \quad \Rightarrow \quad 5 \text { is } a
$$

Check $x=-2$

$$
\log (-2-1)+\log (-2-2)
$$

These ane undefined -2 is not a solution.

## Applications

When a quantity $Q$ changes in time according to the model $Q(t)=Q_{0} e^{k t}$, it is said to experience exponential growth $(k>0)$ or exponential decay $(k<0)$. Here, $Q_{0}$ is the constant initial quantity $Q(0)$, and $k$ is a constant. Examples of such phenomena include

- population changes (over small time frame),
- continuously compounded interest (on deposit or loan amount),
- substances subject to radio active decay

Generally, the model for exponential decay is written $Q(t)=Q_{0} e^{-k t}$, and for growth it is written as $Q(t)=Q_{0} e^{k t}$ so that it is always assumed that $k>0$.

Example
The ${ }^{44} \mathrm{Ti}$ titanium isotope decays to ${ }^{44} \mathrm{Ca}$, a stable calcium isotope. The mass $Q$ is subject to exponential decay
$Q(t)=Q_{0} e^{-k t}$ for $t$ in years, and some $k>0$.
If the half life (amount of time for the mass to reduce by $50 \%$ ) is 60 years, determine the value of $k$.
we know that at time $t=0 \quad Q(0)=Q_{0}$ and when $t=60, Q(60)=\frac{1}{2} Q_{0}$.

Since $Q(t)=Q \cdot e^{-k t}$,

$$
Q(60)=Q_{0} e^{-k(60)}=Q_{0} e^{-60 k}
$$

Setting the two forms of $Q(60)$ equal

$$
\begin{aligned}
& \frac{1}{2} Q_{0}=Q(60)=Q_{0} e^{-60 k} \\
& Q_{0} e^{-60 k}=\frac{1}{2} Q_{0} \quad \text { Pivide bs } Q_{0} \\
& e^{-60 k}=\frac{1}{2} \\
& \ln e^{-60 k}=\ln \frac{1}{2} \\
&-60 k=\ln \frac{1}{2} \\
& \text { so } \quad k=\frac{\ln \frac{1}{2}}{-60}
\end{aligned}
$$

we con rewrite this using

$$
\ln \frac{1}{2}=\ln 2^{-1}=-\ln 2
$$

so

$$
k=\frac{-\ln 2}{-60}=\frac{\ln 2}{60}
$$

