February 5 MATH 1112 sec. 54 Spring 2020

Solving Exponential and Logarithmic Equations

Base-Exponent Equality For any a > 0 with $a \neq 1$, and for any real numbers *x* and *y*

$$a^x = a^y$$
 if and only if $x = y$.

Logarithm Equality For and a > 0 with $a \neq 1$, and for any positive numbers *x* and *y*

 $\log_a x = \log_a y$ if and only if x = y.

February 5, 2020 1/14

Example Since 81= 34 Solve the equation $3^{2x+1} = 81$. The equation is $3^{2x+1} = 3^{4}$. 50 2×+1=4 2x = 3 $\chi = \frac{3}{2}$

et s verify
$$3^{2x+1}$$
 set $x = \frac{3}{2}$
 $3^{2(3/2)+1} = 3^{1+1} = 3^{1} = 81$

February 5, 2020 2/14

<ロ> <四> <四> <四> <四> <四</p>

Example

Find an exact solution¹ to the equation

2^{x+1} = 5^x we can use a log of any base.
Using the natural log:

$$\ln(z^{x+1}) = \ln(S^x)$$
 * $\ln M^2 = p \ln M$
for $n > 0$
 $(x_{+1}) \ln 2 = x \ln 5$
Now, we isolate x
 $x \ln 2 + \ln 2 = x \ln 5$

¹An exact solution may be a number such as $\sqrt{2}$ or In(7) which requires a calculator to approximate as a decimal.

э

3/14

February 5, 2020

$$\ln z = x \ln s - x \ln z$$
$$x (\ln s - \ln z) = \ln z$$

Graphical Solution to $2^{x+1} = 5^x$

Figure: Plots of $y = 2^{x+1}$ and $y = 5^x$ together. The curves intersect at the solution $x = \ln 2/(\ln 5 - \ln 2) \approx 0.7565$. Which curve is $y = 2^{x+1}$, red or blue?

February 5, 2020 6/14

Log Equations & Verifying Answers

Double checking answers is always recommended. When dealing with functions whose domains are restricted, **answer verification** is critical.

Use properties of logarithms to solve the equation $\log(x-1) + \log(x-2) = \log 12$ we'd like to get the form log (Ax) = log (AxAR) Recall log M + log N = log (MN) for M, N>O log (x-1) + log (x-2) = log 12 log ((x-1)(x-2)) = log 12 (x-1)(x-z) = 1250

Now, solve this guadratic equation x^L-3x+2 = 12 $x^2 - 3x - 10 = 0$ This factors nicely (x - 5)(x + 2) = 0X-S=0 => X=S 05 Xn=0 => X=-2 we have to check whether these solve the original log equation. $\int_{0}^{\infty} (x-1) + \int_{0}^{\infty} (x-z) = \int_{0}^{\infty} \int_{0}^{1} z$

Check X=S log (S-1)+log(S-2) = - 5 is a log 4 + log 3 = solution log (4.3) = log 12 Check X = - 2 log (-2-1)+ log (-2-2) These are undefined -2 is not a solution.

February 5, 2020 9/14

イロト イ理ト イヨト イヨト ニヨー

Applications

When a quantity Q changes in time according to the model $Q(t) = Q_0 e^{kt}$, it is said to experience *exponential growth* (k > 0) or *exponential decay* (k < 0). Here, Q_0 is the constant initial quantity Q(0), and k is a constant. Examples of such phenomena include

- population changes (over small time frame),
- continuously compounded interest (on deposit or loan amount),
- substances subject to radio active decay

Generally, the model for exponential decay is written $Q(t) = Q_0 e^{-kt}$, and for growth it is written as $Q(t) = Q_0 e^{kt}$ so that it is always assumed that k > 0.

Example

The ⁴⁴Ti titanium isotope decays to ⁴⁴Ca, a stable calcium isotope. The mass Q is subject to exponential decay

$$Q(t) = Q_0 e^{-kt}$$
 for t in years, and some $k > 0$.

If the half life (amount of time for the mass to reduce by 50%) is 60 years, determine the value of k.

be know that at time
$$t=0$$
 $Q(0)=Q_0$
and when $t=60$, $Q(60)=\frac{1}{2}Q_0$.
Since $Q(t)=Q_0e^{-kt}$,
 $Q(60)=Q_0e^{-k(60)}=Q_0e^{-60k}$
Setting the two forms of $Q(60)$ equal
reprint $Q(60)$ equal
reprint $Q(60)$ equal

12/14

$$\frac{1}{2} Q_{0} = Q(60) = Q_{0} e^{-60k}$$

$$Q_{0} e^{-60k} = \frac{1}{2} Q_{0}$$
Divide by Q_{0}

$$e^{-60k} = \frac{1}{2}$$

$$\ln e^{-60k} = \ln \frac{1}{2}$$

$$-60 k = \ln \frac{1}{2}$$
So
$$k = \frac{\ln \frac{1}{2}}{-60}$$

February 5, 2020 13/14

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

we can rewrite this using $l_n \pm = l_n z' = -l_n 2$ so $k = \frac{-l_n z}{-60} = \frac{l_n z}{-60}$