February 5 Math 3260 sec. 51 Spring 2020

Section 1.9: The Matrix for a Linear Transformation

Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. There exists a unique $m \times n$ matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for every } \quad \mathbf{x} \in \mathbb{R}^{n} .
$$

The matrix, called the standard matrix for the linear transformation T is given by

$$
A=\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right] .
$$

One to one and Onto

Definition: A mapping $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be onto \mathbb{R}^{m} if each \mathbf{b} in \mathbb{R}^{m} is the image of at least one \mathbf{x} in \mathbb{R}^{n}-i.e. if the range of T is all of the codomain.

If $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is an onto transformation, then the equation

$$
T(\mathbf{x})=\mathbf{b} \quad \text { is always solvable }
$$

Definition: A mapping $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be one to one if each \mathbf{b} in \mathbb{R}^{m} is the image of at most one \mathbf{x} in \mathbb{R}^{n}.

If $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a one to one transformation, then the equation

$$
T(\mathbf{x})=T(\mathbf{y}) \text { is only true when } \quad \mathbf{x}=\mathbf{y} .
$$

Some Theorems on Onto and One to One

Theorem: Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. Then T is one to one if and only if the homogeneous equation $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Theorem: Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation, and let A be the standard matrix for T. Then
(i) T is onto if and only if the columns of A span \mathbb{R}^{m}, and
(ii) T is one to one if and only if the columns of A are linearly independent.

A Comment on Notation

Recall that a vector \mathbf{x} in \mathbb{R}^{n} is an ordered n-tuple. That is

$$
\mathbf{x}=\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

For example

$$
(1,2,3)=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]
$$

and

$$
(x+y, 3 z+u, 6 w)=\left[\begin{array}{r}
x+y \\
3 z+u \\
6 w
\end{array}\right]
$$

Example

Let $T\left(x_{1}, x_{2}\right)=\left(x_{1}, 2 x_{1}-x_{2}, 3 x_{2}\right)$. Verify that T is one to one. Is T onto?

We already saw that

$$
\begin{gathered}
T\left(\mathbf{e}_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=(1,2,0) \quad \text { and } \\
T\left(\mathbf{e}_{2}\right)=T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=(0,-1,3)
\end{gathered}
$$

making the standard matrix for T

$$
A=\left[\begin{array}{rr}
1 & 0 \\
2 & -1 \\
0 & 3
\end{array}\right]
$$

To show that T is one to ane, we con show that $T(\vec{x})=\overrightarrow{0}$ - ie. $A \vec{x}=\overrightarrow{0}$ - has only the trivia solution

The augmented matrix for $A \vec{x}=\overrightarrow{0}$ is

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & -1 & 0 \\
0 & 3 & 0
\end{array}\right] \xrightarrow{\operatorname{ret}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \begin{aligned}
& x_{1}=0 \\
& x_{L}=0
\end{aligned}
$$

It Only has the trivial solution. Hence T is one to one.
Is T onto? we con ask e if $T(\vec{x})=\vec{b}$ is always solvable, i.e. is $A \vec{x}=\vec{b}$ always
consistent?
Let $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$. Then $A \vec{x}=\vec{b}$
has augmented matrix $\left[\begin{array}{ccc}1 & 0 & b_{1} \\ 2 & -1 & b_{2} \\ 0 & 3 & b_{3}\end{array}\right]$
Doing a little row reduction

$$
\left[\begin{array}{lll}
1 & 0 & b_{1} \\
0 & 1 & 2 b_{1}-b_{2} \\
0 & 0 & 6 b_{1}-3 b_{2}-b_{3}
\end{array}\right]
$$

$A \vec{x}=\vec{b}$ is only consistent if $6 b_{1}-3 b_{2}-b_{3}=0$.

Since $T(\vec{x})=\vec{b}$ is not solvable for every \vec{b} in \mathbb{R}^{3}, T is not onto.

To sum up:
The standard manic $A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right)\right]$
Since $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, A$ is 3×2.
Since $T\left(\vec{e}_{1}\right)=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ and $T\left(\vec{e}_{2}\right)=\left[\begin{array}{c}0 \\ -1 \\ 3\end{array}\right]$

$$
A=\left[\begin{array}{cc}
1 & 0 \\
2 & -1 \\
0 & 3
\end{array}\right]
$$

That's it. That's A. no extra columns, no x_{1} or x_{2}, no rets. Just that.

To see if T is one to ore, we con investigate the homogeneous equation $A \vec{x}=\overrightarrow{0}$.

If there's only the trivia solution $\rightarrow T$ is oneto one.
If there are nontrivid solutions $\rightarrow T$ is not oretoone.
we found that there was only the trivial solution. so T is one to one.
To see if T is onto, we investigate $A \vec{x}=\vec{b}$ for arbitrary \vec{b}.

If $A \vec{x}=\vec{b}$ is always consistent $\rightarrow T$ is onto.
If $A \vec{x}=\vec{b}_{0}$ could be inconsistent $\rightarrow T$ is not onto.
We found that $A \vec{x}=\vec{b}$ is only consistent for some types of vectors \vec{b} - not for all \vec{b}.

So T is not onto.

