February 5 Math 3260 sec. 51 Spring 2020

Section 1.9: The Matrix for a Linear Transformation

Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. There exists a unique $m \times n$ matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^n$.

The matrix, called the **standard matrix** for the linear transformation T is given by

$$\boldsymbol{A} = \begin{bmatrix} T(\boldsymbol{e}_1) & T(\boldsymbol{e}_2) & \cdots & T(\boldsymbol{e}_n) \end{bmatrix}.$$

イロト 不得 トイヨト イヨト 二日

February 3, 2020

1/9

One to one and Onto

Definition: A mapping $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n —i.e. if the range of *T* is all of the codomain.

If $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is an **onto** transformation, then the equation

 $T(\mathbf{x}) = \mathbf{b}$ is always solvable.

Definition: A mapping $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **one to one** if each **b** in \mathbb{R}^m is the image of **at most one x** in \mathbb{R}^n .

If $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is a **one to one** transformation, then the equation

 $T(\mathbf{x}) = T(\mathbf{y})$ is only true when $\mathbf{x} = \mathbf{y}$.

February 3, 2020 2/9

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つくぐ

Some Theorems on Onto and One to One

Theorem: Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. Then *T* is one to one if and only if the homogeneous equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

Theorem: Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation, and let *A* be the standard matrix for *T*. Then

- (i) T is onto if and only if the columns of A span \mathbb{R}^m , and
- (ii) T is one to one if and only if the columns of A are linearly independent.

イロト 不得 トイヨト イヨト ヨー ろくの

A Comment on Notation

Recall that a vector **x** in \mathbb{R}^n is an ordered *n*-tuple. That is

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = (x_1, x_2, \dots, x_n).$$

For example

$$(1,2,3) = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}, \quad (y_1,y_2,y_3,y_4) = \begin{bmatrix} y_1\\ y_2\\ y_3\\ y_4 \end{bmatrix},$$

and

$$(x+y,3z+u,6w) = \begin{bmatrix} x+y\\ 3z+u\\ 6w\\ 0 \end{bmatrix}.$$

February 3, 2020

4/9

Example

Let $T(x_1, x_2) = (x_1, 2x_1 - x_2, 3x_2)$. Verify that *T* is one to one. Is *T* onto?

We already saw that

$$\mathcal{T}(\mathbf{e}_1) = \mathcal{T}\left(\left[egin{array}{c}1\\0\end{array}
ight]
ight) = (1,2,0) \quad ext{and}$$
 $\mathcal{T}(\mathbf{e}_2) = \mathcal{T}\left(\left[egin{array}{c}0\\1\end{array}
ight]
ight) = (0,-1,3),$

making the standard matrix for T

$$A = \left[\begin{array}{rrr} 1 & 0 \\ 2 & -1 \\ 0 & 3 \end{array} \right].$$

э

イロト イポト イヨト イヨト

T is one to one, we can show To show that - i.e. Ax=0 - has only the that $T(\vec{x}) = \vec{0}$ trivial solution The augmented matrix for AX = 0 is $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 3 & 0 \end{bmatrix} \xrightarrow{\text{met}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{X_1 = 0} X_{1 = 0}$ It Only has the trivice solution. Hence T is one to one. Is T onto? We can ask if T(x)=b is always solvable, i.e. is AZ = & always

◆ロ → ◆ □ → ◆ 三 → ◆ 三 → ◆ 三 → へ ○
February 3, 2020 6/9

consistent?
Let
$$\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
. Then $A\vec{x} = \vec{b}$
has augmented matrix $\begin{bmatrix} 1 & 0 & b_1 \\ 2 & -1 & b_2 \\ 0 & 3 & b_3 \end{bmatrix}$
Doing a little row reduction
 $\begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & 2b_1 - b_2 \\ 0 & 0 & 6b_1 - 3b_2 - b_3 \end{bmatrix}$
Ax=b is only consistent if $6b_1 - 3b_2 - b_3 = 0$

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </p>
February 3, 2020 7/9

To sum up:
The standard matrix
$$A = [T(\vec{e}_1, T(\vec{e}_2)]$$

Since $T: \mathbb{R}^2 \to \mathbb{R}^3$, A is 3×2 .
Since $T(\vec{e}_1) = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ and $T(\vec{e}_2) = \begin{bmatrix} 0 \\ -1 \\ -3 \end{bmatrix}$
A= $\begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 0 & 3 \end{bmatrix}$ That's it. That's A.
No extra columns,
No \times_1 or \times_2 , no
refs. Just that.

◆□→ ◆□→ ◆臣→ ◆臣→ ○臣

To see if T is one to one, we can investigate the
honogeneous equation
$$A\vec{x}=\vec{0}$$
.
If there's only the trivial solution \rightarrow T is one to one.
If there are nontrivial solutions \rightarrow T is not are toone.
We found that there was only the trivial solution.
So T is one to an.
To see if T is anto, we investigate $A\vec{x}=\vec{b}$ for
arbitrary \vec{b} .
If $A\vec{x}=\vec{b}$ is always consistent \rightarrow T is onto.
If $A\vec{x}=\vec{b}$ could be inconsistent \rightarrow T is not arto.
Use found that $A\vec{x}=\vec{b}$ is only consistent for
some types of vectors \vec{b} - not for all \vec{b} .
So T is not onto.