February 6 MATH 1112 sec. 54 Spring 2019

Section 5.3: Inverse of an Exponential Function

Definition: Let $a>0$ and $a \neq 1$. For $x>0$ define $\log _{a}(x)$ as a number such that

$$
\text { if } y=\log _{a}(x) \text { then } x=a^{y} \text {. }
$$

The function

$$
F(x)=\log _{a}(x)
$$

is called the logarithm function of base a. It has domain $(0, \infty)$, range $(-\infty, \infty)$, and if $f(x)=a^{x}$ then

$$
F(x)=f^{-1}(x) .
$$

In particular

- $\log _{a}\left(a^{x}\right)=x$ for every real x, and
- $\mathrm{a}^{\log _{a}(x)}=x$ for every $x>0$.

Graph of Logarithms

Figure: The graph of a logarithm can be obtained from the graph of an exponential by reflection in the line $y=x$. There are two cases depending on whether $0<a<1$ or $a>1$.

Graph of Logarithms

Figure: The graph of a logarithm with a base a where $a>1$.

Graph of Logarithms

Figure: The graph of a logarithm with a base a where $0<a<1$

Evaluating Simple Logarithms

Use the fact that $y=\log _{a}(x)$ means $x=a^{y}$ to evaluate
(a) $\log _{2}(16)=4$

$$
2^{y}=16
$$

(b) $\log _{10}(0.001)=-3$

$$
10^{y}=0.001
$$

(c) $\log _{1 / 2}(4)=-2$
$\left(\frac{1}{2}\right)^{y}=4$
(d) $\log _{a}\left(a^{7}\right)=7$

$$
a^{y}=a^{7}
$$

(e) $\log _{\pi}(1)=0$

$$
\pi^{y}=1
$$

Question

Recall: $y=\log _{a}(x)$ means $x=a^{y}$.
If $e^{t}=70$, then (which statement is true)
(a) $\log _{e}(t)=70$
(b) $\log _{70}(e)=t$
(c) $\log _{e}(70)=t$
(d) $\log _{t}(e)=70$

A Few Properties

- For every $a>0, a^{0}=1$, hence $\log _{a}(1)=0$.
- For every $a>0, a^{1}=a$, hence $\log _{a}(a)=1$.
- For every $a>0$, the expression $\log _{a}(0)$ is UNDEFINED!

Graphically: Every graph $y=\log _{a}(x)$ passes through the points $(1,0)$ and (a, 1). And

$$
\begin{aligned}
& \text { if } a>1 \quad \log _{a}(x) \rightarrow-\infty \quad \text { as } \quad x \rightarrow 0^{+} \\
& \text {if } 0<a<1 \quad \log _{a}(x) \rightarrow \infty \quad \text { as } \quad x \rightarrow 0^{+}
\end{aligned}
$$

Evaluating Logs with a Calculator

Most logarithms can't be evaluated by hand. For example, $\log _{e}(70) \approx 4.2485$. No one memorizes that! Calculators tend to have two built in logarithm functions.

- Common Log base 10 denoted as log (note there is no subscript), and
- Natural Log base e denoted ${ }^{1}$ In

In Calculus, you'll find that the prefered base is e-the natural log. Base 10 logs still have some use such as in the Richter scale used to measure earthquakes.

[^0]
Evaluating Logs with a Calculator

Suppose we wish to evaluate $\log _{2}(15)$. You turn to a calculator, but there is no $\log _{2}$ key! Fortunately, you're not out of luck. Every log can be stated in term of any other log by the following theorem:

Theorem: (Change of Base) Let a, b, and M be any positive numbers, then

$$
\log _{b}(M)=\frac{\log _{a}(M)}{\log _{a}(b)}
$$

$$
\begin{aligned}
& a \neq 1 \\
& b \neq 1
\end{aligned}
$$

What this says is that you can turn your $\log _{2}$ problem into a \log or In problem, and use your machine!

Change of Base
Here's the meat of our theorem again: $\log _{b}(M)=\frac{\log _{a}(M)}{\log _{a}(b)}$.

Express $\log _{2}(15)$ in terms of the natural log. Use a calculator to approximate its value.

$$
\log _{2}(15)=\frac{\ln (15)}{\ln (2)} \approx 3.9069
$$

Question

Here's the meat of our theorem again: $\log _{b}(M)=\frac{\log _{a}(M)}{\log _{a}(b)}$.

Suppose you wish to evaluate $\log _{\pi}(42)$ using a calculator. Which of the following expressions could be used to find the desired value?
(a) $\frac{\log (42)}{\log (\pi)}$
(b) $\ln \left(\frac{42}{\pi}\right)$
(c) $\frac{\ln (\pi)}{\ln (42)}$
(d) $\ln \left(\frac{\pi}{42}\right)$

Section 5.4: Properties of Logarithms

Let's recall the basic properties of exponentials. The logarithms have analog properties.

Let $a>0$, with $a \neq 1$. Then for any real x and y
$-a^{x+y}=a^{x} \cdot a^{y}$

- $a^{x-y}=\frac{a^{x}}{a^{y}}$
- $\left(a^{x}\right)^{y}=a^{x y}$

Log of a Product

Theorem: Let M and N be any positive numbers and $a>0$ with $a \neq 1$. Then

$$
\log _{a}(M N)=\log _{a}(M)+\log _{a}(N)
$$

Illustrative Example:

$$
\log _{2}(16)=\log _{2}(2 \cdot 8)=\log _{2}(2)+\log _{2}(8)
$$

Note that this equation is the true statement

$$
4=1+3
$$

[^0]: ${ }^{1}$ The order LN instead of NL is probably due to the French name le Logarithme Naturel for this log.

