Feb. 6 Math 2254H sec 015H Spring 2015

Section 7.5: Strategies for Integrating

Techniques for Integrating

- By observation (recognition from differentiation rules)
- u-Substitution
- Integration by Parts
- Trigonometric functions (using trigonometric IDs)
- Trigonometric Substitution (for radicals like $\sqrt{ \pm x^{2} \pm a^{2}}$)
- Rational Functions (partial fractions)

These can be combined with one another and with algebra and function identities.

Some Useful Trigonometric Identities

Recall

$$
\sin (A \pm B)=\sin A \cos B \pm \sin B \cos A
$$

and

$$
\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B
$$

Use these to derive alternative formulations for the following products, $\sin A \cos B, \quad \sin A \sin B, \quad$ and $\quad \cos A \cos B$
$\cos A \cos B$

$$
\begin{aligned}
& \cos (A-B)=\cos A \cos B+\sin A \sin B \\
& \cos (A+B)=\cos A \cos B-\sin A \sin B
\end{aligned}
$$

adding gives

$$
2 \cos A \cos B=\cos (A-B)+\cos (A+B)
$$

similarly

$$
2 \sin A \sin B=\cos (A-B)-\cos (A+B)
$$

For $\sin A \cos B$,

$$
\begin{aligned}
& \sin (A+B)=\sin A \cos B+\sin B \cos A \\
& \sin (A-B)=\sin A \cos B-\sin B \cos A
\end{aligned}
$$

summing

$$
2 \sin A \cos B=\sin (A+B)+\sin (A-\beta)
$$

Product to Sum IDs

$$
\begin{aligned}
& \cos A \cos B=\frac{1}{2}(\cos (A-B)+\cos (A+B)) \\
& \sin A \sin B=\frac{1}{2}(\cos (A-B)-\cos (A+B)) \\
& \sin A \cos B=\frac{1}{2}(\sin (A-B)+\sin (A+B))
\end{aligned}
$$

Evaluate Each Integral Using Any Applicable Method
(e)

$$
\begin{aligned}
& \int \sin (2 x) \cos (5 x) d x \\
= & \int \frac{1}{2}(\sin (2 x-5 x)+\sin (2 x+5 x)) d x \\
= & \frac{1}{2} \int(\sin (7 x)-\sin (3 x)) d x \\
= & \frac{1}{2}\left(\frac{-1}{7}\right) \cos (7 x)-\frac{1}{2}\left(\frac{-1}{3}\right) \cos (3 x)+C \\
= & \frac{1}{6} \cos (3 x)-\frac{1}{14} \cos (7 x)+C
\end{aligned}
$$

Evaluate Each Integral Using Any Applicable Method

$$
\begin{aligned}
& \text { (f) } \int \frac{(2 \cos t+5) \sin t}{\cos ^{2} t-\cos t-2} d t \quad u=\cos t, \begin{array}{l}
d u=-\sin t d t \\
-d u=\sin t d t
\end{array} \\
& =-\int \frac{2 u+5}{u^{2}-u-2} d u=-\int \frac{2 u+5}{(u-2)(u+1)} d u \\
& \frac{2 u+5}{(u-2)(u+1)}=\frac{A}{u-2}+\frac{B}{u+1} \\
& 2 u+5=A(u+1)+B(u-2) \\
& \text { If } u=2, \quad 4+5=3 A \Rightarrow A=3
\end{aligned}
$$

$$
\begin{gathered}
\text { If } u=-1,-2+5=-3 B \Rightarrow B=-1 \\
-\int \frac{2 u+5}{(u-2)(u+1)} d u=-\int\left(\frac{3}{u-2}-\frac{1}{u+1}\right) d u= \\
-3 \ln |u-2|+\ln |u+1|+C \\
\int \frac{(2 \cos t+5) \sin t}{\cos ^{2} t-\cos t-2} d t=\ln |\cos t+1|-3 \ln |\cos t-2|+C
\end{gathered}
$$

Evaluate Each Integral Using Any Applicable Method

$$
\begin{aligned}
& \text { (g) } \int \sin \sqrt{x} d x \\
& =\int 2 y \sin \gamma d y \\
& =-2 y \cos y+2 \int \cos y d y \\
& u=2 y \quad d u=2 d y \\
& v=-\cos y \quad d v=\sin y d y \\
& =-2 y \cos y+2 \sin y+C \\
& \text { Let } y=\sqrt{x}, \quad d y=\frac{1}{2 \sqrt{x}} d x \\
& 2 \sqrt{x} d y=d x \\
& 2 y d y=d x \\
& d u=2 d z
\end{aligned}
$$

$$
\begin{aligned}
& =-2 \sqrt{x} \cos \sqrt{x}+2 \sin \sqrt{x}+C \\
& \int \frac{x}{x-1} d x \quad u=x-1 \quad x=u+1 \\
& =\int \frac{u+1}{u} d u=d x \\
& =\int\left(1+\frac{1}{u}\right) d u
\end{aligned}
$$

Evaluate Each Integral Using Any Applicable Method

$$
\text { (h) } \begin{aligned}
& \int \sec ^{-1} x d x \quad u=\sec ^{-1} x \quad d u=\frac{1}{x \sqrt{x^{2}-1}} d x \\
& v=x \quad d v=d x \\
&=x \sec ^{-1} x-\int \frac{x}{x \sqrt{x^{2}-1}} d x \\
&=x \sec ^{-1} x-\int \frac{d x}{\sqrt{x^{2}-1}}=x \sec ^{-1} x-\ln \left|x+\sqrt{x^{2}-1}\right|+C
\end{aligned}
$$

(see work below)

$$
\begin{aligned}
& \int \frac{d x}{\sqrt{x^{2}-1}} \\
= & \frac{x}{1} \\
= & x=\sec \theta \\
= & \sqrt{\tan \theta} \tan \theta d \theta \\
& d x=\sec \theta \tan \theta d \theta \\
=\ln |\sec \theta+\tan \theta|+C & \sqrt{x^{2}-1}=\tan \theta
\end{aligned}
$$

