February 6 Math 3260 sec. 55 Spring 2018

Section 1.8: Intro to Linear Transformations

Recall that the product $A\mathbf{x}$ is a linear combination of the columns of A—turns out to be a vector. If the columns of A are vectors in \mathbb{R}^m , and there are n of them, then

- A is an $m \times n$ matrix,
- the product $A\mathbf{x}$ is defined for \mathbf{x} in \mathbb{R}^n , and
- the vector $\mathbf{b} = A\mathbf{x}$ is a vector in \mathbb{R}^m .

So we can think of *A* as an **object that acts** on vectors **x** in \mathbb{R}^n (via the product $A\mathbf{x}$) to produce vectors **b** in \mathbb{R}^m .

February 6, 2018

Transformation from \mathbb{R}^n to \mathbb{R}^m

Definition: A transformation T (a.k.a. **function** or **mapping**) from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector **x** in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

Some relevant terms and notation include

- \mathbb{R}^n is the **domain** and \mathbb{R}^m is called the **codomain**.
- For **x** in the domain, $T(\mathbf{x})$ is called the **image** of **x** under T.
- The collection of all images is called the range.
- ▶ The notation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ may be used to indicate that \mathbb{R}^n is the domain and \mathbb{R}^m is the codomain.
- ► If $T(\mathbf{x})$ is defined by multiplication by the $m \times n$ matrix A, we may denote this by $\mathbf{x} \mapsto A\mathbf{x}$.

Matrix Transformation Example Let $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix}$. Define the transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ by the mapping $T(\mathbf{x}) = A\mathbf{x}$.

(a) Find the image of the vector $\mathbf{u} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ under *T*.

 $J - H \dot{u}$ $= \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \end{bmatrix} = \begin{bmatrix} -8 \\ -10 \\ 6 \end{bmatrix}$ The output $\begin{bmatrix} -8 \\ -10 \\ 6 \end{bmatrix} \text{ is in } \mathbb{R}^{3}$ T(x) = A x

< ロ > < 同 > < 回 > < 回 >

$$A = \left[\begin{array}{rrr} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{array} \right]$$

(b) Determine a vector \mathbf{x} in \mathbb{R}^2 whose image under T is $\begin{bmatrix} -4 \\ -4 \\ 4 \end{bmatrix}$. We want the solve $T(\mathbf{x}) = \begin{bmatrix} -4 \\ -4 \\ 4 \end{bmatrix}$.

$$T(\vec{x}) = A\vec{x} , \text{ so ar equation is} A\vec{x} = \begin{bmatrix} -Y \\ -Y \\ -Y \\ -Y \\ -Y \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ -Y \\ -Y \\ -Y \\ -Y \\ -Y \end{bmatrix} = \begin{bmatrix} -Y \\ -Y \\ -Y \\ -Y \\ -Y \\ -Y \end{bmatrix}$$

Using a sugmented matrix

$$\begin{bmatrix}
1 & 3 & -4\\
2 & 4 & -4\\
0 & -2 & 4
\end{bmatrix} \xrightarrow{\text{rref}}
\begin{bmatrix}
1 & 0 & 2\\
0 & 1 & -2\\
0 & 0 & 0
\end{bmatrix}$$

$$\chi_{1}=2, \ \chi_{2}=-2$$
The vector $\overrightarrow{\chi} = \begin{bmatrix} 2\\ -2 \end{bmatrix}$ has
image $\begin{bmatrix} -4\\ -4\\ -4\\ -4 \end{bmatrix}$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 - のへで

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix}$$
(c) Determine if $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ is in the range of T.

$$IS \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 the image under T of some X in

$$R^{2}? \quad IS \quad T(\mathbf{x}) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 solvable? This is
the some as aching if $A\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ is
consistent.

February 6, 2018 6 / 39

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Using an augmented notice

$$\begin{bmatrix}
1 & 3 & 1 \\
2 & 4 & 0 \\
0 & -2 & 1
\end{bmatrix}$$
(1 0 0
(0 1 0)
(0 0 1)
Az = $\begin{bmatrix}
1 \\
2
\end{bmatrix}$ is in consistent.
The range of T.

February 6, 2018 7 / 39

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 - のへで

Linear Transformations

Definition: A transformation T is **linear** provided

(i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for every $\mathbf{u} \cdot \mathbf{v}$ in the domain of T, and

(ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for every scalar c and vector **u** in the domain of T.

Every matrix transformation (e.g. $\mathbf{x} \mapsto A\mathbf{x}$) is a linear transformation. And it turns out that every linear transformation from \mathbb{R}^n to \mathbb{R}^m can be expressed in terms of matrix multiplication.

> イロト 不得 トイヨト イヨト ヨー ろくの February 6, 2018

A Theorem About Linear Transformations:

If T is a linear transformation, then

 $T(\mathbf{0}) = \mathbf{0},$ $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$

for scalars *c*, *d* and vectors **u**.**v**.

And in fact

$$T(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_k\mathbf{u}_k) = c_1T(\mathbf{u}_1) + c_2T(\mathbf{u}_2) + \cdots + c_kT(\mathbf{u}_k).$$

February 6, 2018 9 / 39

< ロ > < 同 > < 回 > < 回 >

Example

Let *r* be a nonzero scalar. The transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined by

$$T(\mathbf{x}) = r\mathbf{x}$$

is a linear transformation¹.

Show that T is a linear transformation. Le ned to show that for each \vec{u}, \vec{v} in \mathbb{R}^2 and Scalar C, $T(\vec{u}+\vec{v}) = T(\vec{u}) + T(\vec{v})$ and $T(c\vec{u}) = cT(\vec{u}).$ $T(\vec{u}+\vec{v}) = r(\vec{u}+\vec{v}) = r\vec{u} + r\vec{v} = T(\vec{u}) + T(\vec{v})$

¹It's called a contraction if 0 < r < 1 and a dilation when $r \ge 1 < z > z = 0$ (C) February 6, 2018 10/39

The 1st property holds, Similarly $T(c\tilde{u}) = r(c\tilde{u}) = rc\tilde{u} = cr\tilde{u} = c(r\tilde{u})$ $= c T(\pi)$

Hence both properties hold. T is a linear transformation.

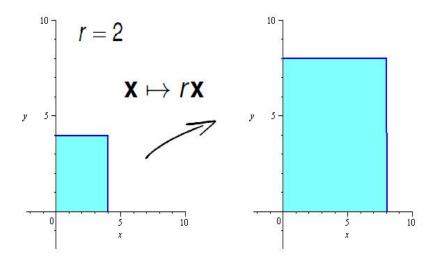


Figure: Geometry of dilation $\mathbf{x} \mapsto 2\mathbf{x}$. The 4 by 4 square maps to an 8 by 8 square.

Section 1.9: The Matrix for a Linear Transformation

Elementary Vectors: We'll use the notation \mathbf{e}_i to denote the vector in \mathbb{R}^n having a 1 in the *i*th position and zero everywhere else.

e.g. in \mathbb{R}^2 the elementary vectors are

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$,

in \mathbb{R}^3 they would be

$$\boldsymbol{e}_1 = \left[\begin{array}{c} 1\\ 0\\ 0 \end{array} \right], \quad \boldsymbol{e}_2 = \left[\begin{array}{c} 0\\ 1\\ 0 \end{array} \right], \quad \text{and} \quad \boldsymbol{e}_3 = \left[\begin{array}{c} 0\\ 0\\ 1 \end{array} \right]$$

and so forth.

Note that in \mathbb{R}^n , the elementary vectors are the columns of the identity I_n .

February 6, 2018

Matrix of Linear Transformation

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^4$ be a linear transformation, and suppose

$$T(\mathbf{e}_1) = \begin{bmatrix} 0\\1\\-2\\4 \end{bmatrix}, \text{ and } T(\mathbf{e}_2) = \begin{bmatrix} 1\\1\\-1\\6 \end{bmatrix}$$

Use the fact that T is linear, and the fact that for each \mathbf{x} in \mathbb{R}^2 we have

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x_2 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

to find a matrix A such that

$$\mathcal{T}(\mathbf{x}) = \mathcal{A}\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^2$.

イロト 不得 トイヨト イヨト 二日

February 6, 2018

$$T(\mathbf{e}_{1}) = \begin{bmatrix} 0\\1\\-2\\4 \end{bmatrix}, \text{ and } T(\mathbf{e}_{2}) = \begin{bmatrix} 1\\1\\-1\\6 \end{bmatrix}$$

$$\text{be know that for any $\vec{x} \text{ in } \mathbb{R}^{2}, \quad \vec{x} \in \begin{bmatrix} x_{1}\\ x_{2} \end{bmatrix}$

$$\vec{x} = x_{1}\vec{e}_{1} + x_{2}\vec{e}_{2} \text{ . Then}$$

$$T(\vec{x}) = T(x_{1}\vec{e}_{1} + x_{2}\vec{e}_{2})$$

$$= x_{1} T(\vec{e}_{1}) + x_{2} T(e_{2})$$

$$\text{Sinke T is at}$$

$$I_{1} T(\vec{e}_{1}) + x_{2} T(e_{2})$$

$$\text{Sinke T is at}$$

$$= x_{1} \begin{bmatrix} 0\\1\\-2\\4 \end{bmatrix} + x_{2} \begin{bmatrix} 1\\1\\-1\\6 \end{bmatrix}$$

$$\text{Sinke T is at}$$

$$\text{Sinke T is at$$

$$\text{Sinke T is at}$$

$$\text{Sinke T is at}$$

$$\text{Sinke T is at$$

$$\text{Sinke T is at}$$

$$\text{Sinke T is at$$

$$\text{Sinke T is at}$$

$$\text{Sinke T is at$$

$$\text{Sin$$$$

$$= \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & -1 \\ 4 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
By definition of
Makrix product

$$= A \overrightarrow{x} \quad \text{if} \quad A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ -2 & -1 \\ 4 & 6 \end{bmatrix}$$
This holds for all \overrightarrow{x} in \mathbb{R}^2 . That is
 $T(\overrightarrow{x}) = A \overrightarrow{x}$ for this matrix A .

February 6, 2018 16 / 39

・ロト・西ト・ヨト・ヨー うへの

Theorem

Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. There exists a unique $m \times n$ matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^n$.

Moreover, the *j*th column of the matrix A is the vector $T(\mathbf{e}_i)$, where \mathbf{e}_i is the *j*th column of the $n \times n$ identity matrix I_n . That is,

$$A = [T(\mathbf{e}_1) \quad T(\mathbf{e}_2) \quad \cdots \quad T(\mathbf{e}_n)].$$

February 6, 2018

17/39

The matrix A is called the standard matrix for the linear transformation $T_{\rm c}$

Example

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the scaling trasformation (contraction or dilation for r > 0) defined by

 $T(\mathbf{x}) = r\mathbf{x}$, for positive scalar *r*.

(a)

Find the standard matrix for T.

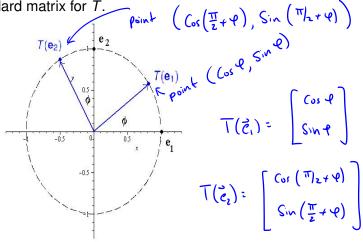
$$\vec{e}_{i} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \xrightarrow{ad} \vec{e}_{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \xrightarrow{s_{0}} T(\vec{e}_{1}) = r \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} r \\ 0 \end{bmatrix} \xrightarrow{ad} T(\vec{e}_{2}) = r \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ r \end{bmatrix}$$

$$A = \begin{bmatrix} T(\vec{e}_{1}) \ T(\vec{e}_{2}) \end{bmatrix} = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix}.$$

イロト 不得 トイヨト イヨト 二日

Example

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the rotation transformation that rotates each point in \mathbb{R}^2 counter clockwise about the origin through an angle ϕ . Find the standard matrix for T.



February 6, 2018 20 / 39

Note
$$Cos(\frac{\pi}{2}+q) = Cos\frac{\pi}{2}Cos q - Sin\frac{\pi}{2}Sin q$$

 $= -Sin q$
 $Sin(\frac{\pi}{2}+q) = Sin\frac{\pi}{2}Cos q + Cos\frac{\pi}{2}Sin q$
 $= Cos q$
 $so T(\frac{\pi}{2}) = \begin{bmatrix} -Sin q \\ Cos q \end{bmatrix}$
 $A = [T(\frac{\pi}{2})T(\frac{\pi}{2})] = \begin{bmatrix} Cos q - Sin q \\ Sin q \end{bmatrix}$

February 6, 2018 21 / 39

・ロト・西ト・モン・モー シック