Section 1.8: Intro to Linear Transformations

Recall that the product $A\mathbf{x}$ is a linear combination of the columns of A—turns out to be a vector. If the columns of A are vectors in \mathbb{R}^m, and there are n of them, then

- A is an $m \times n$ matrix,
- the product $A\mathbf{x}$ is defined for \mathbf{x} in \mathbb{R}^n, and
- the vector $\mathbf{b} = A\mathbf{x}$ is a vector in \mathbb{R}^m.

So we can think of A as an **object that acts** on vectors \mathbf{x} in \mathbb{R}^n (via the product $A\mathbf{x}$) to produce vectors \mathbf{b} in \mathbb{R}^m.
Transformation from \mathbb{R}^n to \mathbb{R}^m

Definition: A transformation T (a.k.a. function or mapping) from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m.

Some relevant terms and notation include

- \mathbb{R}^n is the **domain** and \mathbb{R}^m is called the **codomain**.
- For \mathbf{x} in the domain, $T(\mathbf{x})$ is called the **image** of \mathbf{x} under T.
- The collection of all images is called the **range**.
- The notation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ may be used to indicate that \mathbb{R}^n is the domain and \mathbb{R}^m is the codomain.
- If $T(\mathbf{x})$ is defined by multiplication by the $m \times n$ matrix A, we may denote this by $\mathbf{x} \mapsto A\mathbf{x}$.
Matrix Transformation Example

Let \(A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix} \). Define the transformation \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) by the mapping \(T(\mathbf{x}) = A\mathbf{x} \).

(a) Find the image of the vector \(\mathbf{u} = \begin{bmatrix} 1 \\ -3 \end{bmatrix} \) under \(T \).
(b) Determine a vector \mathbf{x} in \mathbb{R}^2 whose image under T is \[
\begin{bmatrix}
-4 \\
-4 \\
4
\end{bmatrix}.
\]
\[A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix} \]

(c) Determine if \[\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \] is in the range of \(T \).
Linear Transformations

Definition: A transformation \(T \) is **linear** provided

(i) \(T(u + v) = T(u) + T(v) \) for every \(u, v \) in the domain of \(T \), and

(ii) \(T(cu) = cT(u) \) for every scalar \(c \) and vector \(u \) in the domain of \(T \).

Every matrix transformation (e.g. \(x \mapsto Ax \)) is a linear transformation. And it turns out that every linear transformation from \(\mathbb{R}^n \) to \(\mathbb{R}^m \) can be expressed in terms of matrix multiplication.
A Theorem About Linear Transformations:

If T is a linear transformation, then

$$T(0) = 0,$$

$$T(cu + dv) = cT(u) + dT(v)$$

for scalars c, d and vectors u, v.

And in fact

$$T(c_1u_1 + c_2u_2 + \cdots + c_ku_k) = c_1T(u_1) + c_2T(u_2) + \cdots + c_kT(u_k).$$
Example

Let r be a nonzero scalar. The transformation $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined by

$$T(x) = rx$$

is a linear transformation1.
Show that T is a linear transformation.

1It's called a **contraction** if $0 < r < 1$ and a **dilation** when $r > 1$.
Figure: Geometry of dilation $\mathbf{x} \mapsto 2\mathbf{x}$. The 4 by 4 square maps to an 8 by 8 square.
Section 1.9: The Matrix for a Linear Transformation

Elementary Vectors: We’ll use the notation e_i to denote the vector in \mathbb{R}^n having a 1 in the i^{th} position and zero everywhere else.

e.g. in \mathbb{R}^2 the elementary vectors are

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \text{and} \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

in \mathbb{R}^3 they would be

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \text{and} \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

and so forth.

Note that in \mathbb{R}^n, the elementary vectors are the columns of the identity I_n.
Matrix of Linear Transformation

Let \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^4 \) be a linear transformation, and suppose

\[
T(e_1) = \begin{bmatrix} 0 \\ 1 \\ -2 \\ 4 \end{bmatrix}, \quad \text{and} \quad T(e_2) = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 6 \end{bmatrix}.
\]

Use the fact that \(T \) is linear, and the fact that for each \(\mathbf{x} \) in \(\mathbb{R}^2 \) we have

\[
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x_2 \mathbf{e}_1 + x_2 \mathbf{e}_2
\]

to find a matrix \(A \) such that

\[
T(\mathbf{x}) = A\mathbf{x} \quad \text{for every} \quad \mathbf{x} \in \mathbb{R}^2.
\]
\[T(e_1) = \begin{bmatrix} 0 & 1 \\ -2 & 4 \end{bmatrix}, \quad \text{and} \quad T(e_2) = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 6 \end{bmatrix} \]
Theorem

Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a linear transformation. There exists a unique $m \times n$ matrix A such that

$$T(x) = Ax \quad \text{for every} \quad x \in \mathbb{R}^n.$$

Moreover, the j^{th} column of the matrix A is the vector $T(e_j)$, where e_j is the j^{th} column of the $n \times n$ identity matrix I_n. That is,

$$A = [T(e_1) \ T(e_2) \ \cdots \ T(e_n)].$$

The matrix A is called the **standard matrix** for the linear transformation T.
Example
Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the scaling transformation (contraction or dilation for $r > 0$) defined by

$$T(x) = rx, \quad \text{for positive scalar } r.$$

Find the standard matrix for T.
Example

Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the rotation transformation that rotates each point in \mathbb{R}^2 counter clockwise about the origin through an angle ϕ. Find the standard matrix for T.
Example

Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the projection transformation that projects each point onto the x_1 axis

$$T \left(\left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \right) = \left[\begin{array}{c} x_1 \\ 0 \end{array} \right].$$

Find the standard matrix for T.

\[2\text{See pages 73–75 in Lay for matrices associated with other geometric transformation on } \mathbb{R}^2\]
One to One, Onto

Definition: A mapping \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is said to be **onto** \(\mathbb{R}^m \) if each \(b \) in \(\mathbb{R}^m \) is the image of at least one \(x \) in \(\mathbb{R}^n \)—i.e. if the range of \(T \) is all of the codomain.

Definition: A mapping \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is said to be **one to one** if each \(b \) in \(\mathbb{R}^m \) is the image of at most one \(x \) in \(\mathbb{R}^n \).
Determine if the transformation is one to one, onto, neither or both.

\[T(x) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix} x. \]
Some Theorems

Theorem: Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a linear transformation. Then T is one to one if and only if the homogeneous equation $T(x) = 0$ has only the trivial solution.
Some Theorems

Theorem: Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. Then

(i) T is onto if and only if the columns of A span \mathbb{R}^m, and

(ii) T is one to one if and only if the columns of A are linearly independent.
Example

Let $T(x_1, x_2) = (x_1, 2x_1 - x_2, 3x_2)$. Verify that T is one to one. Is T onto?