February 6 Math 3260 sec. 56 Spring 2018

Section 1.8: Intro to Linear Transformations

Recall that the product $A\mathbf{x}$ is a linear combination of the columns of A—turns out to be a vector. If the columns of A are vectors in \mathbb{R}^m , and there are n of them, then

- A is an $m \times n$ matrix,
- the product $A\mathbf{x}$ is defined for \mathbf{x} in \mathbb{R}^n , and
- the vector $\mathbf{b} = A\mathbf{x}$ is a vector in \mathbb{R}^m .

So we can think of *A* as an **object that acts** on vectors **x** in \mathbb{R}^n (via the product $A\mathbf{x}$) to produce vectors **b** in \mathbb{R}^m .

February 6, 2018

Transformation from \mathbb{R}^n to \mathbb{R}^m

Definition: A transformation T (a.k.a. **function** or **mapping**) from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector **x** in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

Some relevant terms and notation include

- \mathbb{R}^n is the **domain** and \mathbb{R}^m is called the **codomain**.
- For **x** in the domain, $T(\mathbf{x})$ is called the **image** of **x** under T.
- The collection of all images is called the range.
- ▶ The notation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ may be used to indicate that \mathbb{R}^n is the domain and \mathbb{R}^m is the codomain.
- ► If $T(\mathbf{x})$ is defined by multiplication by the $m \times n$ matrix A, we may denote this by $\mathbf{x} \mapsto A\mathbf{x}$.

Matrix Transformation Example Let $A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix}$. Define the transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ by the mapping $T(\mathbf{x}) = A\mathbf{x}$.

(a) Find the image of the vector $\mathbf{u} = \begin{vmatrix} 1 \\ -3 \end{vmatrix}$ under *T*.

$$T(\vec{u}) = A\vec{u} \qquad \vec{u} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \end{bmatrix} = \begin{bmatrix} -8 \\ -10 \\ 6 \end{bmatrix} \qquad T(\vec{u}) = \begin{bmatrix} -8 \\ -10 \\ 6 \end{bmatrix}$$

イロト イ団ト イヨト イヨト

$$A = \left[\begin{array}{rrr} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{array} \right]$$

(b) Determine a vector \mathbf{x} in \mathbb{R}^2 whose image under T is $\begin{bmatrix} -4 \\ -4 \\ 4 \end{bmatrix}$. Find \mathbf{x} such that $T(\mathbf{x}) = \begin{bmatrix} -4 \\ -4 \\ 4 \end{bmatrix}$. Since T(z) = Az, this equation is $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} -4 \\ -4 \\ 4 \end{bmatrix}$ We can use an originated motion

∃ ► < ∃</p>

Image: A matrix and a matrix

$$\begin{bmatrix} 1 & 3 & -4 \\ 2 & 4 & -4 \\ 0 & -2 & 4 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$x_1 = 2$$

$$x_2 = -2$$
A sector \vec{x} whose image is
$$\begin{bmatrix} -4 \\ -4 \\ -4 \end{bmatrix}$$
is
$$\vec{x} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$

February 6, 2018 5 / 39

・ロト・西ト・モン・モー シック

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \\ 0 & -2 \end{bmatrix}$$

(c) Determine if $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ is in the range of T.
i.e. is $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ the image of some \vec{x} in \mathbb{R}^2 .
This can be stated as an equation:
Is $T(\vec{x}) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ solvable, i.e.,
is $A\vec{x} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ consistent?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Using an augmented ratrite

$$\begin{bmatrix}
1 & 3 & 1 \\
2 & 4 & 0 \\
0 & -2 & 1
\end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$
Ax = $\begin{bmatrix}
0 \\
1
\end{bmatrix}$ is inconsistent, pivetourn in
 $\begin{bmatrix}
1 \\
2 \\
3 \\
1
\end{bmatrix}$ is inconsistent, pivetourn in
 $\begin{bmatrix}
0 \\
1
\end{bmatrix}$ is not in the range of T.

February 6, 2018 7 / 39

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 - のへで

Linear Transformations

Definition: A transformation T is **linear** provided

(i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for every \mathbf{u}, \mathbf{v} in the domain of T, and

(ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for every scalar c and vector **u** in the domain of T.

Every matrix transformation (e.g. $\mathbf{x} \mapsto A\mathbf{x}$) is a linear transformation. And it turns out that every linear transformation from \mathbb{R}^n to \mathbb{R}^m can be expressed in terms of matrix multiplication.

> イロト 不得 トイヨト イヨト ヨー ろくの February 6, 2018

A Theorem About Linear Transformations:

If T is a linear transformation, then

T(0) = 0, $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$

for scalars c, d and vectors \mathbf{u}, \mathbf{v} .

And in fact

 $T(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_k\mathbf{u}_k) = c_1T(\mathbf{u}_1) + c_2T(\mathbf{u}_2) + \cdots + c_kT(\mathbf{u}_k).$

February 6, 2018

Example

Let *r* be a nonzero scalar. The transformation $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined by

$$T(\mathbf{x}) = r\mathbf{x}$$

is a linear transformation¹. Show that T is a linear transformation. We have to show that for any \vec{n}, \vec{v} in \mathbb{R}^2 and scalar $C = T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$, and $T(c\vec{u}) = cT(\vec{u})$. $T(\vec{u} + \vec{v}) = r(\vec{u} + \vec{v}) = r\vec{u} + r\vec{v} = T(\vec{u}) + T(\vec{v})$

¹It's called a contraction if 0 < r < 1 and a dilation when $r \ge 1 < z > z = 0$ (C) February 6.2018 10/39

The 1st property holds. $T(c\hbar) = r(c\hbar) = rc\hbar = cr\hbar = c(r\hbar)$ = c T(ta). Both properties hold, so T is a line transformation.

> February 6, 2018

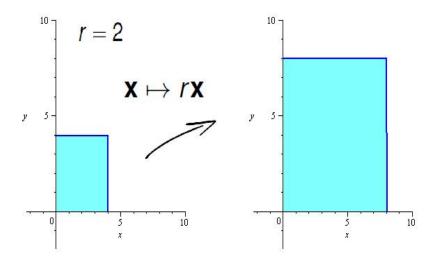


Figure: Geometry of dilation $\mathbf{x} \mapsto 2\mathbf{x}$. The 4 by 4 square maps to an 8 by 8 square.

Section 1.9: The Matrix for a Linear Transformation

Elementary Vectors: We'll use the notation \mathbf{e}_i to denote the vector in \mathbb{R}^n having a 1 in the *i*th position and zero everywhere else.

e.g. in \mathbb{R}^2 the elementary vectors are

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$,

in \mathbb{R}^3 they would be

$$\boldsymbol{e}_1 = \left[\begin{array}{c} 1\\ 0\\ 0 \end{array} \right], \quad \boldsymbol{e}_2 = \left[\begin{array}{c} 0\\ 1\\ 0 \end{array} \right], \quad \text{and} \quad \boldsymbol{e}_3 = \left[\begin{array}{c} 0\\ 0\\ 1 \end{array} \right]$$

and so forth.

Note that in \mathbb{R}^n , the elementary vectors are the columns of the identity I_n .

February 6, 2018

Matrix of Linear Transformation

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^4$ be a linear transformation, and suppose

$$T(\mathbf{e}_1) = \begin{bmatrix} 0\\1\\-2\\4 \end{bmatrix}, \text{ and } T(\mathbf{e}_2) = \begin{bmatrix} 1\\1\\-1\\6 \end{bmatrix}$$

Use the fact that T is linear, and the fact that for each \mathbf{x} in \mathbb{R}^2 we have

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

to find a matrix A such that

$$\mathcal{T}(\mathbf{x}) = \mathcal{A}\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^2$.

イロト 不得 トイヨト イヨト 二日

February 6, 2018

$$T(\mathbf{e}_{1}) = \begin{bmatrix} 0 \\ 1 \\ -2 \\ 4 \end{bmatrix}, \text{ and } T(\mathbf{e}_{2}) = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 6 \end{bmatrix}$$
$$\vec{\chi} = \begin{bmatrix} \chi_{1} \\ \chi_{2} \end{bmatrix} = \chi_{1} \stackrel{?}{e}_{1} + \chi_{2} \stackrel{?}{e}_{2}$$
$$\overline{T}(\vec{\chi}) = \overline{T}(\chi, \vec{e}_{1} + \chi_{2} \vec{e}_{2})$$
$$= \chi_{1} \overline{T}(\vec{e}_{1}) + \chi_{2} \overline{T}(e_{2})$$
$$= \chi_{1} \begin{bmatrix} 6 \\ 1 \\ -2 \\ 4 \end{bmatrix} + \chi_{2} \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix} \text{ as } T \text{ is finear}$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○
February 6, 2018 15 / 39

$$= \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
By definition of
the product "Ax"
This holds for any vector \vec{x} in \mathbb{R}^2 ,
so $T(\vec{x}) = A\vec{x}$ where
 $A = \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 4 & 6 \end{bmatrix}$.
Note $A = [T(\vec{e}_1) \ T(\vec{e}_2)]$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

Theorem

Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. There exists a unique KX in R" $m \times n$ matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for every $\mathbf{x} \in \mathbb{R}^n$.

Moreover, the *j*th column of the matrix A is the vector $T(\mathbf{e}_i)$, where \mathbf{e}_i is the *j*th column of the $n \times n$ identity matrix I_n . That is,

$$A = [T(\mathbf{e}_1) \quad T(\mathbf{e}_2) \quad \cdots \quad T(\mathbf{e}_n)].$$

イロト 不得 トイヨト イヨト ヨー ろくの February 6, 2018

17/39

The matrix A is called the standard matrix for the linear transformation $T_{\rm c}$

Example

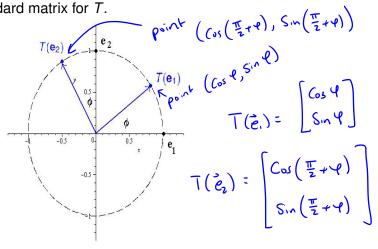
Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the scaling trasformation (contraction or dilation for r > 0) defined by

 $T(\mathbf{x}) = r\mathbf{x}$, for positive scalar *r*.

 $\mathbb{E}_{\mathbf{z}}^{\mathbf{z}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \mathbf{T}(\mathbf{\vec{e}}_{1}) = \mathbf{r} \mathbf{\vec{e}}_{1} = \mathbf{r} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad \mathbf{T}(\mathbf{\vec{e}}_{2}) = \mathbf{r} \mathbf{\vec{e}}_{2} = \mathbf{r} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{r} \end{bmatrix}$ Find the standard matrix for T. so the stand and matrix $A = \left[\overline{T}(e_{1}) T(e_{2}) \right]^{2} \left[\begin{array}{c} c \\ o \\ c \end{array} \right]^{2}$ February 6, 2018 18/39

Example

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the rotation transformation that rotates each point in \mathbb{R}^2 counter clockwise about the origin through an angle ϕ . Find the standard matrix for *T*.



$$Cos\left(\frac{\pi}{2}+\varphi\right) = Cos\frac{\pi}{2}Cos\varphi - Sin\frac{\pi}{2}Sin\varphi = -Sin\varphi$$

$$Sin\left(\frac{\pi}{2}+\varphi\right) = Sin\frac{\pi}{2}Cos\varphi + Sin\varphi Cos\frac{\pi}{2} = Cos\varphi$$

$$\implies T(e_{2}) = \begin{bmatrix} -Sin\varphi\\ Cos\varphi \end{bmatrix}$$

February 6, 2018 21 / 39

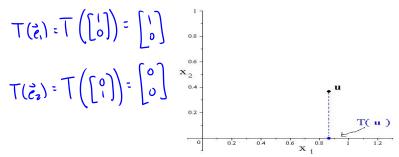
・ロト・西ト・ヨト・ヨー うへの

Example²

Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the projection transformation that projects each point onto the x_1 axis

$$T\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right)=\left[\begin{array}{c}x_1\\0\end{array}\right].$$

Find the standard matrix for T.



²See pages 73–75 in Lay for matrices associated with other geometric $\mathbb{P} = -9$ (c) tranformation on \mathbb{R}^2 February 6, 2018 23/39

The standed motivix $A = \left[T(\vec{e}_1) \quad T(\vec{e}_2) \right] = \left[\begin{array}{c} 1 & 0 \\ 0 & 0 \end{array} \right]$

February 6, 2018 24 / 39

One to One, Onto

Definition: A mapping $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n —i.e. if the range of *T* is all of the codomain.

If T is onto, then a equation $T(\vec{x}) = \vec{b}$ is consistent for every \vec{b} in \mathbb{R}^m .

Definition: A mapping $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is said to be **one to one** if each **b** in \mathbb{R}^m is the image of **at most one x** in \mathbb{R}^n .

i.e. T is one to one it

$$T(\vec{x}) = T(\vec{y})$$
 if and only if $\vec{X} = \vec{y}$.

February 6, 2018 25 / 39

Determine if the transformation is one to one, onto, neither or both.

$$T(\mathbf{x}) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix} \mathbf{x}.$$

$$T: \mathbb{R}^{2} \to \mathbb{R}^{2}$$

$$Lt'_{r} \text{ see if } T \text{ is onto.}$$

$$Is every verther \quad \tilde{b} = \begin{bmatrix} b_{1} \\ b_{2} \end{bmatrix} \text{ the output}$$

$$\tilde{b} = T(\tilde{\mathbf{x}}) \text{ for some } \tilde{\mathbf{x}} \text{ in } \mathbb{R}^{3}.$$

$$Is \quad T(\tilde{\mathbf{x}}) = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \end{bmatrix} \text{ consistant}.$$

Using a augmented notix

$$\begin{bmatrix}
1 & 0 & 2 & b_1 \\
0 & 1 & 3 & b_2
\end{bmatrix} ref \begin{bmatrix}
1 & 0 & 2 & b_1 \\
0 & 1 & 3 & b_2
\end{bmatrix}$$
never of a pivot apivot apivot consistent, column that is always consistent, that is to is in range T for every to in R². T is onto.

February 6, 2018 27 / 39

・ロト・西ト・ヨト・ヨー うへの

From the ref. we see that

$$X_1 = b_1 - 2X_3$$

 $X_2 = b_2 - 3X_3$
 $X_3 - free$
So $T(X) = b$ has infinitely many solutions
So $T(x) = b$ has infinitely many solutions

February 6, 2018 28 / 39

・ロト・西ト・ヨト・ヨー うへの