## February 6 Math 3260 sec. 56 Spring 2018

## Section 1.8: Intro to Linear Transformations

Recall that the product $A \mathbf{x}$ is a linear combination of the columns of $A$-turns out to be a vector. If the columns of $A$ are vectors in $\mathbb{R}^{m}$, and there are $n$ of them, then

- $A$ is an $m \times n$ matrix,
- the product $A \mathbf{x}$ is defined for $\mathbf{x}$ in $\mathbb{R}^{n}$, and
- the vector $\mathbf{b}=A \mathbf{x}$ is a vector in $\mathbb{R}^{m}$.

So we can think of $A$ as an object that acts on vectors $\mathbf{x}$ in $\mathbb{R}^{n}$ (via the product $A \mathbf{x}$ ) to produce vectors $\mathbf{b}$ in $\mathbb{R}^{m}$.

## Transformation from $\mathbb{R}^{n}$ to $\mathbb{R}^{m}$

Definition: A transformation $T$ (a.k.a. function or mapping) from $\mathbb{R}^{n}$ to $\mathbb{R}^{m}$ is a rule that assigns to each vector $\mathbf{x}$ in $\mathbb{R}^{n}$ a vector $T(\mathbf{x})$ in $\mathbb{R}^{m}$.

Some relevant terms and notation include

- $\mathbb{R}^{n}$ is the domain and $\mathbb{R}^{m}$ is called the codomain.
- For $\mathbf{x}$ in the domain, $T(\mathbf{x})$ is called the image of $\mathbf{x}$ under $T$.
- The collection of all images is called the range.
- The notation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ may be used to indicate that $\mathbb{R}^{n}$ is the domain and $\mathbb{R}^{m}$ is the codomain.
- If $T(\mathbf{x})$ is defined by multiplication by the $m \times n$ matrix $A$, we may denote this by $\mathbf{x} \mapsto A \mathbf{x}$.

$$
\therefore r^{x} \text { maps }
$$

Matrix Transformation Example Let $A=\left[\begin{array}{cc}1 & 3 \\ 2 & 4 \\ 0 & -2\end{array}\right]$. Define the transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ by the mapping $T(\mathbf{x})=A \mathbf{x}$.
(a) Find the image of the vector $\mathbf{u}=\left[\begin{array}{c}1 \\ -3\end{array}\right]$ under $T$.

$$
\begin{aligned}
T(\vec{u}) & =A \vec{u} \\
& =\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right]\left[\begin{array}{c}
1 \\
-3
\end{array}\right]=\left[\begin{array}{c}
-8 \\
-10 \\
6
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
\vec{u}=\left[\begin{array}{l}
1 \\
-3
\end{array}\right] \text { is in } \mathbb{R}^{2} \\
T(\vec{u})=\left[\begin{array}{c}
-8 \\
-10 \\
6
\end{array}\right] \text { is } \\
\text { in } \mathbb{R}^{3}
\end{gathered}
$$

$$
A=\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right]
$$

(b) Determine a vector $\mathbf{x}$ in $\mathbb{R}^{2}$ whose image under $T$ is $\left[\begin{array}{c}-4 \\ -4 \\ 4\end{array}\right]$. Find $\vec{x}$ such that $T(\vec{x})=\left[\begin{array}{c}-y \\ -y \\ y\end{array}\right]$. Since $T(\vec{x})=A \vec{x}$, this equation is

$$
\left[\begin{array}{ll}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-4 \\
-4 \\
4
\end{array}\right]
$$

We can use an augmented matrix

$$
\left[\begin{array}{ccc}
1 & 3 & -4 \\
2 & 4 & -4 \\
0 & -2 & 4
\end{array}\right] \stackrel{\text { ref }}{\longrightarrow}\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

A sector $\vec{x}$ whose image is $\left[\begin{array}{c}-4 \\ -4 \\ 4\end{array}\right]$ is

$$
\vec{x}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right]
$$

$$
A=\left[\begin{array}{cc}
1 & 3 \\
2 & 4 \\
0 & -2
\end{array}\right]
$$

(c) Determine if $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is in the range of $T$.
ie. is $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ the image of some $\vec{x}$ in $\mathbb{R}^{2}$.
This con be stated as an equation:
is $\quad T(\vec{x})=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ solvable, ie.
is

$$
A \vec{x}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \text { consistent? }
$$

Using an augmented matrix

$$
\left[\begin{array}{ccc}
1 & 3 & 1 \\
2 & 4 & 0 \\
0 & -2 & 1
\end{array}\right] \xrightarrow{\text { ret }}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$A \vec{x}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is inconsistent.
$\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is not in the range of $T$.

## Linear Transformations

Definition: A transformation $T$ is linear provided
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for every $\mathbf{u}, \mathbf{v}$ in the domain of $T$, and
(ii) $T(c \mathbf{u})=c T(\mathbf{u})$ for every scalar $c$ and vector $\mathbf{u}$ in the domain of $T$.

Every matrix transformation (e.g. $\mathbf{x} \mapsto A \mathbf{x}$ ) is a linear transformation. And it turns out that every linear transformation from $\mathbb{R}^{n}$ to $\mathbb{R}^{m}$ can be expressed in terms of matrix multiplication.

## A Theorem About Linear Transformations:

If $T$ is a linear transformation, then

$$
\begin{gathered}
T(\mathbf{0})=\mathbf{0} \\
T(c \mathbf{u}+d \mathbf{v})=c T(\mathbf{u})+d T(\mathbf{v})
\end{gathered}
$$

for scalars $c, d$ and vectors $\mathbf{u}, \mathbf{v}$.
And in fact

$$
T\left(c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{k} \mathbf{u}_{k}\right)=c_{1} T\left(\mathbf{u}_{1}\right)+c_{2} T\left(\mathbf{u}_{2}\right)+\cdots+c_{k} T\left(\mathbf{u}_{k}\right)
$$

Example
Let $r$ be a nonzero scalar. The transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ defined by

$$
T(\mathbf{x})=r \mathbf{x}
$$

is a linear transformation ${ }^{1}$.
Show that $T$ is a linear transformation.
We howe to show that for any $\vec{u}, \vec{v}$ in $\mathbb{R}^{2}$ and scaler

$$
\begin{array}{ll}
c \quad T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v}) \text {, oud } \\
T(c \vec{u})=c T(\vec{u}) . \\
T(\vec{u}+\vec{v}) & =r(\vec{u}+\vec{v})=r \vec{u}+r \vec{v}=T(\vec{u})+T(\vec{v})
\end{array}
$$

${ }^{1}$ It's called a contraction if $0<r<1$ and a dilation when $r>1$

The $1^{\text {st }}$ property holds.

$$
\begin{aligned}
T(c \vec{u})=r(c \vec{u})=r(\vec{u} & =c r \vec{u}=c(r \vec{u}) \\
& =c T(\vec{u}) .
\end{aligned}
$$

Both properties hold, so $T$ is a liner transformation.


Figure: Geometry of dilation $\mathbf{x} \mapsto \mathbf{2 x}$. The 4 by 4 square maps to an 8 by 8 square.

## Section 1.9: The Matrix for a Linear Transformation

Elementary Vectors: We'll use the notation $\mathbf{e}_{i}$ to denote the vector in $\mathbb{R}^{n}$ having a 1 in the $i^{i t h}$ position and zero everywhere else. e.g. in $\mathbb{R}^{2}$ the elementary vectors are

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

in $\mathbb{R}^{3}$ they would be

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

and so forth.
Note that in $\mathbb{R}^{n}$, the elementary vectors are the columns of the identity $I_{n}$.

## Matrix of Linear Transformation

Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{4}$ be a linear transformation, and suppose

$$
T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}
0 \\
1 \\
-2 \\
4
\end{array}\right], \quad \text { and } \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
6
\end{array}\right] .
$$

Use the fact that $T$ is linear, and the fact that for each $\mathbf{x}$ in $\mathbb{R}^{2}$ we have

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}
$$

to find a matrix $A$ such that

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for every } \quad \mathbf{x} \in \mathbb{R}^{2} .
$$

$$
\begin{aligned}
& T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}
0 \\
1 \\
-2 \\
4
\end{array}\right], \quad \text { and } \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
6
\end{array}\right] \\
& \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2} \\
& T(\vec{x})=T\left(x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}\right) \\
&=x_{1} T\left(\vec{e}_{1}\right)+x_{2} T\left(e_{2}\right) \quad \text { as } T \text { is linear } \\
&=x_{1}\left[\begin{array}{c}
0 \\
1 \\
-2 \\
4
\end{array}\right]+x_{2}\left[\begin{array}{c}
1 \\
1 \\
-1 \\
6
\end{array}\right] \quad \text { givens }
\end{aligned}
$$

$$
=\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
-2 & -1 \\
4 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

By detrition of the product " $A \vec{x}$ "

This holds for org vector $\vec{x}$ in $\mathbb{R}^{2}$,
so $T(\vec{x})=A \vec{x}$ where

$$
A=\left[\begin{array}{cc}
0 & 1 \\
1 & 1 \\
-2 & -1 \\
4 & 6
\end{array}\right]
$$

Note $A=\left[\begin{array}{ll}T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right)\end{array}\right]$

## Theorem

Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. There exists a unique $m \times n$ matrix $A$ such that
$r \vec{x}$ in $\mathbb{R}^{n}$

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for every } \quad \mathbf{x} \in \mathbb{R}^{n}
$$

Moreover, the $j^{\text {th }}$ column of the matrix $A$ is the vector $T\left(\mathbf{e}_{j}\right)$, where $\mathbf{e}_{j}$ is the $j^{\text {th }}$ column of the $n \times n$ identity matrix $I_{n}$. That is,

$$
A=\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right] .
$$

The matrix $A$ is called the standard matrix for the linear transformation $T$.

Example
Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the scaling trasformation (contraction or dilation for $r>0$ ) defined by

$$
T(\mathbf{x})=r \mathbf{x}, \quad \text { for positive scalar } r
$$

$$
\begin{aligned}
& \text { Find the standard matrix for } T . \\
& \text { in } \mathbb{R}^{2} \vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], T\left(\vec{e}_{1}\right)=r \vec{e}_{1}=r\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
r \\
0
\end{array}\right] \\
& \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], T\left(\vec{e}_{2}\right)=r \vec{e}_{2}=r\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
r
\end{array}\right]
\end{aligned}
$$

so the stand and matrix

$$
A=\left[T\left(e_{1}\right) T\left(e_{2}\right)\right]=\left[\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right]
$$

Example
Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the rotation transformation that rotates each point in $\mathbb{R}^{2}$ counter clockwise about the origin through an angle $\phi$. Find the standard matrix for $T$.

$$
\begin{aligned}
& \text { ard matrix for } T \text {. } \\
& T\left(e_{2}\right) \\
& \operatorname{sint}\left(\cos \left(\frac{\pi}{2}+\varphi\right), \sin \left(\frac{\pi}{2}+\varphi\right)\right) \\
& \sin \varphi]
\end{aligned}
$$

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2}+\varphi\right)=\cos \frac{\pi}{2} \cos \varphi-\sin \frac{\pi}{2} \sin \varphi=-\sin \varphi \\
& \sin \left(\frac{\pi}{2}+\varphi\right)=\sin \frac{\pi}{2} \cos \varphi+\sin \varphi \cos \frac{\pi}{2}=\cos \varphi \\
& \Rightarrow T\left(\vec{e}_{2}\right)=\left[\begin{array}{c}
-\sin \varphi \\
\cos \varphi
\end{array}\right]
\end{aligned}
$$

The stonderd motrix

$$
\begin{aligned}
& \text { tonderd modrix } \\
& A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right)\right]=\left[\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{array}\right]
\end{aligned}
$$

## Example ${ }^{2}$

Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the projection transformation that projects each point onto the $x_{1}$ axis

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right] .
$$

Find the standard matrix for $T$.

$$
\left.\begin{array}{l}
T\left(\vec{e}_{1}\right)=T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right)=\left[\begin{array}{ll}
1 \\
0
\end{array}\right]\right. \\
T\left(\vec{e}_{2}\right)=T\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{ll}
0 \\
0
\end{array}\right] \\
x_{2} x_{2} \\
0.4 \\
\hline
\end{array}\right] \quad \begin{aligned}
& T(u)
\end{aligned}
$$

[^0]The standed motrix

$$
A=\left[\begin{array}{ll}
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

One to One, Onto
Definition: A mapping $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be onto $\mathbb{R}^{m}$ if each $\mathbf{b}$ in $\mathbb{R}^{m}$ is the image of at least one $\mathbf{x}$ in $\mathbb{R}^{n}$-ie. if the range of $T$ is all of the codomain.

If $T$ is onto, then an equation $T(\vec{x})=\vec{b}$ is consistent for eves y $\vec{b}$ in $\mathbb{R}^{m}$.

Definition: A mapping $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be one to one if each $\mathbf{b}$ in $\mathbb{R}^{m}$ is the image of at most one $\mathbf{x}$ in $\mathbb{R}^{n}$.
ie. $T$ is one to one if

$$
\begin{aligned}
& T \text { is one to one it } \\
& T(\vec{x})=T(\vec{y}) \text { if and only if } \vec{x}=\vec{y} \text {. }
\end{aligned}
$$

Determine if the transformation is one to one, onto, neither or both.

$$
\begin{aligned}
& T(\mathbf{x})=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right] \mathbf{x} . \\
& T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}
\end{aligned}
$$

Lat's see if $T$ is onto.
Is every vector $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$ the output $\overrightarrow{b_{0}}=T(\vec{x})$ for some $\vec{x}$ in $\mathbb{R}^{3}$ ?
is $T(\vec{x})=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$ consistent?

Using an augmented matrix

$$
\left[\begin{array}{llll}
1 & 0 & 2 & b_{1} \\
0 & 1 & 3 & b_{2}
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{llll}
1 & 0 & 2 & b_{1} \\
0 & 1 & 3 & b_{2}
\end{array}\right]
$$

The system is always consistent, that is $\vec{b}$ is in range $T$ for eves? $\vec{b}_{b}$ in $\mathbb{R}^{2}$. $T$ is onto.

From the ref, we see that

$$
\begin{gathered}
x_{1}=b_{1}-2 x_{3} \\
x_{2}=b_{2}-3 x_{3} \\
x_{3}-\text { free }
\end{gathered}
$$

So $T(\vec{x})=\vec{b}$ has infinitely, many solutions
so $T$ is not one to one.


[^0]:    ${ }^{2}$ See pages 73-75 in Lay for matrices associated with other geometric tranformation on $\mathbb{R}^{2}$

