## February 7 MATH 1112 sec. 54 Spring 2020

## Exponential and Logarithmic Functions

Recall, for $a>0$ and $a \neq 1$

$$
\log _{a}(x)=y \quad \Longleftrightarrow \quad a^{y}=x
$$

If $f(x)=a^{x}$, then

- The domain of $f$ is $(-\infty, \infty)$.
- The range of $f$ is $(0, \infty)$.


## Question

If $g(x)=\ln (x)$, then which of the following is true?
(a) The domain of $g$ is $(-\infty, \infty)$, and the range of $g$ is $(-\infty, \infty)$.
(b) The domain of $g$ is $(-\infty, \infty)$, and the range of $g$ is $(0, \infty)$.
(c) The domain of $g$ is $(0, \infty)$, and the range of $g$ is $(0, \infty)$.
(d) The domain of $g$ is $(0, \infty)$, and the range of $g$ is $(-\infty, \infty)$.

## Question

The value $\log _{a}(0)$ is
(a) equal to 1.
(b) only defined if $a>1$.

(c) is always undefined.
(d) is only defined if $0<a<1$.

## Question

The graph of $y=\ln (x)$ is
(a) increasing on $(0, \infty)$.
(b) has $x$-intercept at $(1,0)$.
(c) has the $y$-axis as a vertical asymptote.

(d) All of the above are true about the graph.
(e) None of the above are true about the graph.

Example
Suppose $f(x)=\log _{5}(x+1)+\log _{5}(x-1)$ for all $x>1$.
Find the inverse function $f^{-1}(x)$.
Let $y=f(x)$

$$
y=\log _{5}(x+1)+\log _{5}(x-1)
$$

Now, we isolate $x$.
use $\log _{5}(M)+\log _{5}(N)=\log _{5}(M N) \quad$ for $M, N>0$

$$
\begin{gathered}
y=\log _{5}((x+1)(x-1)) \\
(a+b)(a-b)=a^{2}-b^{2}
\end{gathered}
$$

$$
\begin{aligned}
y & =\log _{5}\left(x^{2}-1\right) \quad y=\log _{5} \nRightarrow \Rightarrow=5^{y} \\
5^{y} & =x^{2}-1 \\
x^{2}-1 & =5^{y} \\
x^{2} & =5^{y}+1 \\
x & =\sqrt{5^{y}+1}
\end{aligned}
$$

Only the positive root makes sense since $x>1$.

Swap labels $x \leftrightarrow b$

$$
y=\sqrt{5^{x}+1}
$$

So

$$
f^{-1}(x)=\sqrt{5^{x}+1}
$$

