February 7 MATH 1112 sec. 54 Spring 2020

Exponential and Logarithmic Functions

Recall, for a > 0 and $a \neq 1$

$$\log_a(x) = y \quad \Longleftrightarrow \quad a^y = x.$$

If $f(x) = a^x$, then

- ▶ The domain of f is $(-\infty, \infty)$.
- ▶ The range of f is $(0, \infty)$.

Question

If $g(x) = \ln(x)$, then which of the following is true?

- (a) The domain of g is $(-\infty, \infty)$, and the range of g is $(-\infty, \infty)$.
- (b) The domain of g is $(-\infty, \infty)$, and the range of g is $(0, \infty)$.
- (c) The domain of g is $(0, \infty)$, and the range of g is $(0, \infty)$.
- (d) The domain of g is $(0, \infty)$, and the range of g is $(-\infty, \infty)$.

Question

The value $log_a(0)$ is

- (a) equal to 1.
- (b) only defined if a > 1.
- (c) is always undefined.
 - (d) is only defined if 0 < a < 1.

Question

The graph of y = ln(x) is

- (a) increasing on $(0, \infty)$.
- (b) has x-intercept at (1,0).
- (c) has the *y*-axis as a vertical asymptote.
- (d) All of the above are true about the graph.
- (e) None of the above are true about the graph.

Example

Suppose
$$f(x) = \log_5(x+1) + \log_5(x-1)$$
 for all $x > 1$.

Find the inverse function $f^{-1}(x)$.

Let
$$y = f(x)$$

 $y = \log_{S}(x+1) + \log_{S}(x-1)$
Now, we isolate x .
Use $\log_{S}(M) + \log_{S}(N) = \log_{S}(Nn)$ for any $N > 0$
 $y = \log_{S}(x+1)(x-1)$
 $(a+b)(a-b) = a^{2}-b^{2}$

Only the positive root makes sense since x>1

Swap labels X -> 6

$$y = \sqrt{5^{\times} + 1}$$

February 4, 2020