February 8 MATH 1112 sec. 54 Spring 2019

Section 5.4: Properties of Logarithms

Let's recall the basic properties of exponentials. The logarithms have analog properties.

Let $a>0$, with $a \neq 1$. Then for any real x and y

- $a^{x+y}=a^{x} \cdot a^{y}$
$-a^{x-y}=\frac{a^{x}}{a^{y}}$
- $\left(a^{x}\right)^{y}=a^{x y}$

Log of a Product

Theorem: Let M and N be any positive numbers and $a>0$ with $a \neq 1$. Then

$$
\log _{a}(M N)=\log _{a}(M)+\log _{a}(N)
$$

Illustrative Example:

$$
\log _{2}(16)=\log _{2}(2 \cdot 8)=\log _{2}(2)+\log _{2}(8)
$$

Note that this equation is the true statement

$$
4=1+3
$$

Question

Here's the meat of our theorem: $\log _{a}(M N)=\log _{a}(M)+\log _{a}(N)$.
Which of the following is equivalent to $\log _{3}(15)$?
(a) $\log _{3}(5)+\log _{3}(3)$

$$
\log _{3}(5 \cdot 3)
$$

(b) $\log _{3}(10)+\log _{3}(5)$
(c) $\log _{3}(3) \cdot \log _{3}(5)$
(d) all of the above are equivalent
(e) none of the above is equivalent

Log of a Power

Theorem: Let M be any positive number, a be any positive number different from 1 , and p be any real number. Then

$$
\log _{a}\left(M^{p}\right)=p \log _{a}(M) .
$$

Illustrative Example:

$$
\log _{2}(64)=\log _{2}\left(4^{3}\right)=3 \log _{2}(4) .
$$

Note that this equation is the true statement

$$
6=3 \cdot 2 .
$$

Question

Here's the meat of our theorem: $\log _{a}\left(M^{p}\right)=p \log _{a}(M)$.
Which of the following is equivalent to $\log _{7}(125)$?
(a) $5 \log _{7}(25)$

$$
\log _{7}\left(5^{3}\right)
$$

(b) $3 \log _{7}(5)$
(c) $\left(\log _{7}(5)\right)^{3}$
(d) all of the above are equivalent
(e) none of the above is equivalent

Log of a Quotient

Theorem: Let M and N be any positive numbers and $a>0$ with $a \neq 1$. Then

$$
\log _{a}\left(\frac{M}{N}\right)=\log _{a}(M)-\log _{a}(N)
$$

Illustrative Example:

$$
\log _{2}(4)=\log _{2}\left(\frac{16}{4}\right)=\log _{2}(16)-\log _{2}(4)
$$

Note that this equation is the true statement

$$
2=4-2
$$

Question

Here's the meat of our theorem: $\log _{a}\left(\frac{M}{N}\right)=\log _{a}(M)-\log _{a}(N)$.
Which of the following is equivalent to $\log _{3}(5)$?
(a) $\log _{3}(15)-\log _{3}(3)$
$=\log _{3}\left(\frac{15}{3}\right)$
(b) $\log _{3}(10)-\log _{3}(5)$
(c) $\frac{\log _{3}(15)}{\log _{3}(3)}$
(d) all of the above are equivalent
(e) none of the above is equivalent

Question

Properties of logarithms are sometimes confused with erroneous, somewhat look-alike expressions. Which of the following is FALSE?
(a) $\ln (x y)=(\ln x)(\ln y)$
(b) $\log _{2}(x)=\ln \left(x^{2}\right)$
(c) $\log _{4}(2+7)=\log _{4}(2)+\log _{4}(7)$
(d) $(\log (10))^{5}=\underbrace{\log \left(10^{5}\right.}_{5})$
$\log \left(10^{r}\right)=r$
(e) All of the above are false.

Example: Using the properties together
Express the following as a sum, difference, and multiple of logarithms.

$$
\begin{aligned}
& \log _{a} \sqrt{\frac{a^{3} b^{5}}{\sqrt[3]{a} \sqrt{b+1}}} \\
& =\log _{a}\left(\frac{a^{3} b^{5}}{a^{1 / 3}(b+1)^{\frac{1}{2}}}\right)^{\frac{1}{2}} \\
& =\frac{1}{2} \log _{a}\left(\frac{a^{3} b^{5}}{a^{1 / 3}(b+1)^{1 / 2}}\right) \\
& =\frac{1}{2} \log _{a}\left(\frac{a^{8 / 3} b^{5}}{(b+1)^{1 / 2}}\right) \\
& \text { well Use } \\
& \log _{a}(m N)=\log _{a} M+\log _{a} N \\
& \log _{a}\left(M^{p}\right)=p \log _{a} M \\
& \log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N \\
& \frac{a^{3}}{a^{1 / 3}}=a^{3-\frac{1}{3}}=a^{\frac{9}{3}-\frac{1}{3}}=a^{8 / 3}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(\log _{a}\left(a^{8 / 3} b^{5}\right)-\log _{a}(b+1)^{1 / 2}\right) \\
& =\frac{1}{2}\left(\log _{a} a^{8 / 3}+\log _{a} b^{5}-\log _{a}(b+1)^{1 / 2}\right) \\
& =\frac{1}{2}\left(\frac{8}{3} \log _{a} a+5 \log _{a} b-\frac{1}{2} \log _{a}(b+1)\right) \\
& =\frac{1}{2}\left(\frac{8}{3} 1+5 \log _{a} b-\frac{1}{2} \log _{a}(b+1)\right) \\
& =\frac{4}{3}+\frac{5}{2} \log _{a} b-\frac{1}{4} \log _{a}(b+1)
\end{aligned}
$$

Question

Which of the following expressions is equivalent to

$$
\log _{2}\left(x^{3} \sqrt{y^{2}-1}\right)
$$

(a) $\log _{2}\left(x^{3}\right)-\frac{1}{2} \log _{2}\left(y^{2}-1\right)$
(b) $\frac{3}{2} \log _{2}\left(x\left(y^{2}-1\right)\right)$
(c) $3 \log _{2}(x)+\frac{1}{2} \log _{2}\left(y^{2}-1\right)$
(d) $3 \log _{2}(x)+\frac{1}{2} \log _{2}\left(y^{2}\right)-\frac{1}{2} \log _{2}(1)$

Summary of Log Properties

Assume each expression is well defined.
(i) Change of base: $\log _{b}(M)=\frac{\log _{a}(M)}{\log _{a}(b)}$
(ii) Log of Product: $\log _{a}(M N)=\log _{a}(M)+\log _{a}(N)$
(iii) \log of Power: $\log _{a}\left(M^{p}\right)=p \log _{a}(M)$
(iv) Log of Quotient: $\log _{a}\left(\frac{M}{N}\right)=\log _{a}(M)-\log _{a}(N)$
(v) Inverse Function: $a^{\log _{a}(x)}=x$ and $\log _{a}\left(a^{x}\right)=x$
(vi) Special Values: $\log _{a}(1)=0, \log _{a}(a)=1$, and $\log _{a}(0)$ is never defined.

