February 8 Math 2306 sec. 57 Spring 2018

Section 5: First Order Equations Models and Applications

A Nonlinear Modeling Problem: A population P(t) of tilapia changes at a rate jointly proportional to the current population and the difference between the constant carrying capacity M of the environment and the current population. Determine the differential equation satsified by P.

The rate of change of the population is $\frac{dP}{dt}$. We're told it is jointly proportional to

P and M-P (difference between carrying capacity M and P).

Hence

$$\frac{dP}{dt} = kP(M-P)$$
 for some constant k .

¹The carrying capacity is the maximum number of individuals that the environment can support due to limitation of space and resources.

Logistic Differential Equation

The equation

$$\frac{dP}{dt} = kP(M-P), \quad k, M > 0$$

is called a logistic growth equation.

Solve this equation² and show that for any $P(0) \neq 0$, $P \rightarrow M$ as $t \rightarrow \infty$.

Eqn is separable
$$\frac{1}{P(M-P)} \frac{dP}{dt} = k \implies \left(\frac{1}{P(M-P)} dP = \int k dt \right)$$

$$\frac{1}{P(M-P)} = \frac{1}{M} \left(\frac{1}{P} + \frac{1}{M-P} \right)$$

is useful.

²The partial fraction decomposition

$$\int \frac{1}{m} \left(\frac{1}{P} + \frac{1}{m-P} \right) dP = \int k dt$$

$$\int \left(\frac{1}{P} + \frac{1}{m-P} \right) dP = \int k m dt$$

$$\left| \frac{P}{M-P} \right| = kMt + C$$
 exponentiate
$$\left| \frac{P}{M-P} \right| = e$$

$$= e$$

Applying
$$P(0) = P_0 \Rightarrow \frac{P_0}{M - P_0} = Ae^0 = A$$

$$P = \frac{\frac{P_o}{M-P_o}}{1 + \frac{P_o}{M-P_o}} \frac{M + M + M}{M} \left(\frac{M-P_o}{M-P_o}\right) \frac{Clear}{Lockions}$$

Finally
$$P(t) = \frac{P_o M e}{M - P_o + P_o e^{kmt}}$$

The solution to the

Looking at the long time population lin P(t): lin P. Me

to a N-P. + P. Ent = <u>M</u> = Ji- Pom (kme kmt)
Pom (kme kmt)
Pom (kme kmt) C. Hobye = 1,~ t->0 = M

So P(t) -M as t- so for any Po # 0.

Section 6: Linear Equations Theory and Terminology

Recall that an *n*th order linear IVP consists of an equation

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

to solve subject to conditions

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, \quad y^{(n-1)}(x_0) = y_{n-1}.$$

The problem is called **homogeneous** if $g(x) \equiv 0$. Otherwise it is called **nonhomogeneous**.

Theorem: Existence & Uniqueness

Theorem: If a_0, \ldots, a_n and g are continuous on an interval I, $a_n(x) \neq 0$ for each x in I, and x_0 is any point in I, then for any choice of constants y_0, \ldots, y_{n-1} , the IVP has a unique solution y(x) on I.

Put differently, we're guaranteed to have a solution exist, and it is the only one there is!

Homogeneous Equations

We'll consider the equation

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$

and assume that each a_i is continuous and a_n is never zero on the interval of interest.

Theorem: If y_1, y_2, \dots, y_k are all solutions of this homogeneous equation on an interval I, then the *linear combination*

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_k y_k(x)$$

is also a solution on *I* for any choice of constants c_1, \ldots, c_k .

This is called the **principle of superposition**.

Corollaries

- (i) If y_1 solves the homogeneous equation, the any constant multiple $y = cy_1$ is also a solution.
- (ii) The solution y = 0 (called the trivial solution) is always a solution to a homogeneous equation.

Big Questions:

- Does an equation have any nontrivial solution(s), and
- ► since y₁ and cy₁ aren't truly different solutions, what criteria will be used to call solutions distinct?

11 / 41

Linear Dependence

Definition: A set of functions $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ are said to be **linearly dependent** on an interval I if there exists a set of constants c_1, c_2, \ldots, c_n with at least one of them being nonzero such that

$$c_1f_1(x) + c_2f_2(x) + \cdots + c_nf_n(x) = 0$$
 for all x in I .

A set of functions that is not linearly dependent on *I* is said to be **linearly independent** on *I*.

Example: A linearly Dependent Set

The functions $f_1(x) = \sin^2 x$, $f_2(x) = \cos^2 x$, and $f_3(x) = 1$ are linearly dependent on $I = (-\infty, \infty)$.

We want to show that there exists numbers
$$C_{1,1}C_{2,1}C_{3}$$
 not all 300 such that $C_{1,1}(x) + C_{2}f_{2}(x) + C_{3}f_{3}(x) = 0$ for all real X .

Recall $S_{1}n^{2}x + C_{0}s^{2}x = 1$.

Taking $C_{1} = C_{2} = 1$ and $C_{3} = -1$ (not all 300)

$$|f_{1}(x) + |f_{2}(x) - 1f_{3}(x)| = |S_{1}n^{2}x| + |C_{0}s^{2}x| - 1 = 0$$

Example: A linearly Independent Set

The functions $f_1(x) = \sin x$ and $f_2(x) = \cos x$ are linearly independent on $I = (-\infty, \infty)$.

Lie need to show that
$$C_1f_1(x) + (zf_2(x) = 0)$$
 for all real X only if $C_1 = 0$ and $C_2 = 0$.

Suppose $C_1Sin \times + C_2Sin \times = 0$ for all real X .

It must be true when $X=0$.

 $C_1Sin O + C_2 Cos O = 0$
 $C_1O + C_2Os O = 0$
 $C_2 = 0$

This holds when X= T/2, so

$$C_1 Sin \frac{\pi}{2} = 0$$

$$C_1 \cdot 1 = 0 \implies C_1 = 0$$

Both c, and co must be zero.

Determine if the set is Linearly Dependent or Independent on $(-\infty, \infty)$

$$f_1(x) = x^2$$
, $f_2(x) = 4x$, $f_3(x) = x - x^2$
Consider $c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x) = 0$ for all x
 $c_1 x^2 + c_2(4x) + c_3(x - x^2) = 0$
Let's collect like terms
 $(c_1 - c_3) x^2 + (4c_2 + c_3) x = 0$
We can naturally these coefficients 300 by

The set is linearly dependent,