February 8 Math 2306 sec. 60 Spring 2018

Section 5: First Order Equations Models and Applications

A Nonlinear Modeling Problem: A population $P(t)$ of tilapia changes at a rate jointly proportional to the current population and the difference between the constant carrying capacity ${ }^{1} M$ of the environment and the current population. Determine the differential equation satsified by P.

The rate of change of the population is $\frac{d P}{d t}$. We're told it is jointly proportional to
P and $M-P$ (difference between carrying capacity M and P). Hence

$$
\frac{d P}{d t}=k P(M-P) \quad \text { for some constant } k .
$$

[^0]Logistic Differential Equation
The equation

$$
\frac{d P}{d t}=k P(M-P), \quad k, M>0
$$

is called a logistic growth equation.
Solve this equation ${ }^{2}$ and show that for any $P(0) \neq 0, P \rightarrow M$ as $t \rightarrow \infty$.
The ODE is separable

$$
P(0)=P_{0}
$$

$$
\begin{gathered}
\frac{1}{P(M-P)} \frac{d P}{d t}=k \Rightarrow \int \frac{1}{P(M-P)} d P=\int k d t \\
\int \frac{1}{M}\left(\frac{1}{P}+\frac{1}{M-P}\right) d P=\int k d t
\end{gathered}
$$

${ }^{2}$ The partial fraction decomposition

$$
\frac{1}{P(M-P)}=\frac{1}{M}\left(\frac{1}{P}+\frac{1}{M-P}\right)
$$

is useful.

$$
\begin{aligned}
\int\left(\frac{1}{P}+\frac{1}{M-P}\right) d P & =\int k M d t \\
\ln |P|-\ln |M-\rho| & =k M t+C \\
\ln \left|\frac{P}{M-P}\right| & =k M t+C \\
\left|\frac{P}{M-P}\right| & =e^{k M t+C}=e^{c} e^{k M t}
\end{aligned}
$$

Letting $A=e^{c},-e^{c}$,or zero

$$
\frac{P}{M-P}=A e^{k n t}
$$

Applying $P(0)=P_{0} \quad \frac{P_{0}}{M-P_{0}}=A e^{\circ}=A$
$A=\frac{P_{0}}{M-P_{0}}$ weill cone back for this.

$$
\begin{aligned}
& \frac{P}{M-P}=A e^{k M t} \Rightarrow P=A e^{k M t}(M-P) \\
& P=A M e^{k M t}-A P e^{k M t} \\
& P+A P e^{k M t}=A M e^{k M t} \\
& \left(1+A e^{k M t}\right) P=A M e^{k M t}
\end{aligned}
$$

$$
\begin{aligned}
& P=\frac{A M e^{k M t}}{1+A e^{k M t}} \text { use } A=\frac{P_{0}}{M-P_{0}} \\
& P=\frac{\frac{P_{0}}{M-P_{0}} M e^{k M t}}{1+\frac{P_{0}}{M-P_{0}} e^{k M t}}\left(\frac{M-P_{0}}{M-P_{0}}\right) \begin{array}{l}
\text { clear } \\
\text { rations }
\end{array} \\
& P=\frac{P_{0} M e^{k M t}}{M-P_{0}+P_{0} e^{k n t}} \\
& \text { Solution to } \\
& \text { the } \\
& \text { W } P \text {. }
\end{aligned}
$$

The long time population

$$
\lim _{t \rightarrow \infty} P(t)=\lim _{t \rightarrow \infty} \frac{P_{0} M e^{k M t}}{M-P_{0}+P_{0} e^{k M t}}=\frac{\infty}{\infty}
$$

$$
=\lim _{t \rightarrow \infty} M=M
$$

Hence $P\left(t \rightarrow M\right.$ as $t \rightarrow \infty$ for any $P_{0} \neq 0$.

Section 6: Linear Equations Theory and Terminology

Recall that an $n^{\text {th }}$ order linear IVP consists of an equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

to solve subject to conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1} .
$$

The problem is called homogeneous if $g(x) \equiv 0$. Otherwise it is called nonhomogeneous.

Theorem: Existence \& Uniqueness

Theorem: If a_{0}, \ldots, a_{n} and g are continuous on an interval I, $a_{n}(x) \neq 0$ for each x in I, and x_{0} is any point in I, then for any choice of constants y_{0}, \ldots, y_{n-1}, the IVP has a unique solution $y(x)$ on I.

Put differently, we're guaranteed to have a solution exist, and it is the only one there is!

Homogeneous Equations

We'll consider the equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

and assume that each a_{i} is continuous and a_{n} is never zero on the interval of interest.

Theorem: If $y_{1}, y_{2}, \ldots, y_{k}$ are all solutions of this homogeneous equation on an interval l, then the linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)
$$

is also a solution on I for any choice of constants c_{1}, \ldots, c_{k}.
This is called the principle of superposition.

Corollaries

(i) If y_{1} solves the homogeneous equation, the any constant multiple $y=c y_{1}$ is also a solution.
(ii) The solution $y=0$ (called the trivial solution) is always a solution to a homogeneous equation.

Big Questions:

- Does an equation have any nontrivial solution(s), and
- since y_{1} and $c y_{1}$ aren't truly different solutions, what criteria will be used to call solutions distinct?

Linear Dependence

Definition: A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are said to be linearly dependent on an interval l if there exists a set of constants $c_{1}, c_{2}, \ldots, c_{n}$ with at least one of them being nonzero such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } I .
$$

A set of functions that is not linearly dependent on / is said to be linearly independent on I.

Example: A linearly Dependent Set

The functions $f_{1}(x)=\sin ^{2} x, f_{2}(x)=\cos ^{2} x$, and $f_{3}(x)=1$ are linearly dependent on $I=(-\infty, \infty)$.
we wart to show that there exists c_{1}, c_{2}, c_{3} not all zero such that $c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0$ for all x.

The can is $\quad c_{1} \sin ^{2} x+c_{2} \cos ^{2} x+c_{3}=0$
Recall $\sin ^{2} x+\cos ^{2} x=1 \Rightarrow \sin ^{2} x+\cos ^{2} x-1=0 \quad$ for all x
we con toke $c_{1}=c_{2}=1$ and $c_{3}=-1$.
Since at least one of these is nonzero, the functions are linearly dependent.

Example: A linearly Independent Set

The functions $f_{1}(x)=\sin x$ and $f_{2}(x)=\cos x$ are linearly independent on $I=(-\infty, \infty)$.

Consider $c_{1} f_{1}(x)+c_{2} f_{2}(x)=0$ for all real x.

$$
c_{1} \sin x+c_{2} \cos x=0 \text { for abs real } x \text {. }
$$

If this holds for all x, it holds when $x=0$.

$$
\begin{aligned}
& C_{1} \sin 0+c_{2} \cos 0=0 \\
& c_{1} \cdot 0+c_{2} \cdot 1=0 \quad \Rightarrow c_{2}=0
\end{aligned}
$$

So the equation is
$C_{1} \sin x=0$ for all real x

This has to hold when $x=\pi / 2$.

So

$$
\begin{aligned}
c_{1} \sin \frac{\pi}{2} & =0 \\
c_{1} \cdot 1 & =0 \quad \Rightarrow \quad c_{1}=0
\end{aligned}
$$

so $c_{1} f_{1}(x)+c_{2} f_{2}(x)=0$ for all red x only if $C_{1}=C_{2}=0$.

Hence the functions are linearly independent.

Determine if the set is Linearly Dependent or Independent on $(-\infty, \infty)$

$$
f_{1}(x)=x^{2}, \quad f_{2}(x)=4 x, \quad f_{3}(x)=x-x^{2}
$$

Consider $c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0$ for all red x.

$$
c_{1} x^{2}+c_{2}(4 x)+c_{3}\left(x-x^{2}\right)=0
$$

Collect like terms

$$
\left(c_{1}-c_{3}\right) x^{2}+\left(4 c_{2}+c_{3}\right) x=0
$$

Every thing cancels if $C_{1}=c_{3}$ and $c_{2}=\frac{-1}{4} c_{3}$
A choice is $C_{1}=4, C_{3}=4, C_{2}=-1$

Then

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0 \quad \text { for all }
$$ x

$$
4 x^{2}+(-1)(4 x)+4\left(x-x^{2}\right)=0
$$

They're linearly dependent.

[^0]: ${ }^{1}$ The carrying capacity is the maximum number of individuals that the environment can support due to limitation of space and resources.

