February 8 Math 2306 sec. 60 Spring 2018

Section 5: First Order Equations Models and Applications

A Nonlinear Modeling Problem: A population P(t) of tilapia changes
at a rate jointly proportional to the current population and the difference
between the constant carrying capacity! M of the environment and the
current population. Determine the differential equation satsified by P.

The rate of change of the population is Cg: We're told it is jointly
proportional to
P and M — P (difference between carrying capacity M and P).

Hence
aP

dt
"The carrying capacity is the maximum number of individuals that the environment
can support due to limitation of space and resources.

kP(M — P) for some constant k.
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Logistic Differential Equation
The equation P

o =kP(M—-P), k,M>0
is called a logistic growth equation.
Solve this equation? and show that for any P(0) # 0, P — M as t — oo.
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2The partial fraction decomposition

is useful.
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Section 6: Linear Equations Theory and Terminology

Recall that an n order linear IVP consists of an equation

dn gn-1 d
an(x )dx};Jran 1(X)d n— }1/+"'+a1(x)d%(/+30(x)y:g()()

to solve subject to conditions

yxo0)=Yo, Y0)=x1, v YD (x0) = yns.

The problem is called homogeneous if g(x) = 0. Otherwise it is called
nonhomogeneous.
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Theorem: Existence & Uniqueness

Theorem: If ay, ..., a, and g are continuous on an interval /,

an(x) # 0 for each x in I, and xg is any point in /, then for any choice of
constants yp, ..., ¥n_1, the IVP has a unique solution y(x) on /.

Put differently, we’re guaranteed to have a solution exist, and it is the
only one there is!
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Homogeneous Equations

We’ll consider the equation
dnf1y dy
W+---+a1(x)a+ao(x)y:0

and assume that each a; is continuous and a,, is never zero on the
interval of interest.

an() 2 4 ap ()

Theorem: If yq, v», ..., ¥k are all solutions of this homogeneous
equation on an interval /, then the linear combination

y(x) = ciy1(x) + coy(X) + - - + Ck¥k(X)

is also a solution on / for any choice of constants ¢, .. ., Cx.

This is called the principle of superposition.
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Corollaries

(i) If y4 solves the homogeneous equation, the any constant multiple
y = cyy is also a solution.

(i) The solution y = 0 (called the trivial solution) is always a solution
to a homogeneous equation.

Big Questions:
» Does an equation have any nontrivial solution(s), and

» since y; and cy; aren’t truly different solutions, what criteria will be
used to call solutions distinct?
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Linear Dependence

Definition: A set of functions fi(x), f(x), ..., f,(x) are said to be
linearly dependent on an interval / if there exists a set of constants
¢y, Co, ..., Cnp With at least one of them being nonzero such that

Cify(X) + Cofo(X) + - + Cafn(x) =0 forall xin /.

A set of functions that is not linearly dependent on / is said to be
linearly independent on /.
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Example: A linearly Dependent Set

The functions f;(x) = sin® x, (x) = cos? x, and f3(x) = 1 are linearly
dependent on | = (—o0, 00).
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Example: A linearly Independent Set

The functions f;(x) = sin x and f>(x) = cos x are linearly independent
on | = (—o0, 0).
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Determine if the set is Linearly Dependent or
Independent on (—oo, o)

A(X) = X%, h(x)=4x, fH(x)=x—x
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