February 8 Math 2306 sec. 60 Spring 2019

Section 5: First Order Equations Models and Applications
RC Series Circuit: The charge $q(t)$ on the capacitor of an RC-series circuit with resistance R, capacitance C, and implied electromotive force E is governed by

$$
R \frac{d q}{d t}+\frac{1}{C} q=E(t) .
$$

LR Series Circuit: The current $i=\frac{d q}{d t}$ in an LR-series circuit with resistance R, inductance L, and implied electromotive force E is governed by

$$
L \frac{d i}{d t}+R i=E(t) .
$$

Measurable Quantities \& Units

Resistance R in ohms (Ω), Implied voltage E in volts (V),
Inductance L in henries (h), Charge q in coulombs (C),
Capacitance C in farads (f), Current i in amperes (A)

Current is the rate of change of charge with respect to time: $i=\frac{d q}{d t}$.

Example
A 200 volt battery is applied to an RC series circuit with resistance 1000Ω and capacitance $5 \times 10^{-6} f$. Find the charge $q(t)$ on the capacitor if $i(0)=0.4 \mathrm{~A}$. Determine the charge as $t \rightarrow \infty$.

$$
\begin{array}{ll}
R \frac{d g}{d t}+\frac{1}{c} q=E & R=1000 \quad C=5 \cdot 10^{-6} \\
E(t)=200 \\
1000 \frac{d}{d t}+\frac{1}{5 \cdot 10^{-6}} q=200 & i(0)=q^{\prime}(0)=0 \cdot 4=\frac{2}{5} \\
\text { Standerd form } & * \frac{1}{5 \cdot 10^{-6}} \\
1000 & =\frac{10^{6}}{5(1000)}=\frac{10^{3}}{5}=200 \\
\frac{d q}{d t}+200 q_{q}=\frac{1}{5}, q^{\prime}(0)=\frac{2}{5} & \frac{200}{1000}=\frac{1}{5}
\end{array}
$$

$$
\begin{aligned}
P(t)=200 \text { so } \mu(t) & =e^{2200 d t}=e^{200 t} \\
\frac{d}{d t}\left(e^{200 t} q\right) & =\frac{1}{5} e^{200 t} \\
e^{200 t} q & =\int \frac{1}{5} e^{200 t} d t=\frac{1}{5(200)} e^{200 t}+k \\
q & =\frac{1}{1000}+k e^{-200 t}
\end{aligned}
$$

Apply the condition $q^{\prime}(0)=\frac{2}{5}$

$$
q^{\prime}(t)=-200 k e^{-200 t}
$$

$$
q^{\prime}(0)=-200 k e^{0}=\frac{2}{5} \Rightarrow k=\frac{2}{5(-200)}=\frac{-1}{500}
$$

The charge on the capacitor

$$
q(t)=\frac{1}{1000}-\frac{1}{500} e^{-200 t}
$$

Here, $q=q_{p}+q_{c}$ where

$$
q_{p}(t)=\frac{1}{1000} \text { and } q_{c}(t)=\frac{-1}{500} e^{-200 t}
$$

q_{p} is the steady state and q_{c} is the transient state

The long time charge

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} g(t)=\lim _{t \rightarrow \infty}\left(\frac{1}{1000}-\frac{1}{500} e^{-200 t}\right) \\
&=\frac{1}{1000}-0 \quad e^{-200 t} \rightarrow 0 \\
&=\frac{1}{1000} \quad \text { as } \\
& t \rightarrow \infty
\end{aligned}
$$

The charge approaches $\frac{1}{1000}$ C

A Classic Mixing Problem

A tank originally contains 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped in at a rate of $5 \mathrm{gal} / \mathrm{min}$. The well mixed solution is pumped out at the same rate. Find the amount of salt $A(t)$ in pounds at the time t. Find the concentration of the mixture in the tank at $t=5$ minutes.

A salt variable in lbs
t time variable in minutes

A Classic Mixing Problem

Figure: Spatially uniform composite fluids (e.g. salt \& water, gas \& ethanol) being mixed. Concentrations of substance change in time.

Building an Equation

The rate of change of the amount of salt

$$
\frac{d A}{d t}=\binom{\text { input rate }}{\text { of salt }}-\binom{\text { output rate }}{\text { of salt }}
$$

r-fluid rate

The input rate of salt is C -concentration fluid rate in - concentration of inflow $=r_{i}\left(c_{i}\right) . \quad i$ - in

The output rate of salt is
o-out
fluid rate out \cdot concentration of outflow $=r_{0}\left(c_{0}\right)$.

Building an Equation

The concentration of the outflowing fluid is the fork concentration

$$
\frac{\text { total salt }}{\text { total volume }}=\frac{A(t)}{V(t)}=\frac{A(t)}{V(0)+\left(r_{i}-r_{0}\right) t} \text {. }
$$

$$
\frac{d A}{d t}=r_{i} \cdot c_{i}-r_{o} \frac{A}{V_{i}}
$$

This equation is first order linear.

Combined with $A(0)$, we get on IVP.

Solve the Mixing Problem

A tank originally contains 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped in at a rate of $5 \mathrm{gal} / \mathrm{min}$. The well mixed solution is pumped out at the same rate. Find the amount of salt $A(t)$ in pounds at the time t. Find the concentration of the mixture in the tank at $t=5$ minutes.

$$
\begin{aligned}
r_{i} & =S \frac{g d}{\sin } \\
C_{i} & =2 \frac{1 b}{g e l} \quad r_{0}=S \frac{g l}{\min } \\
V(t) & =V(0)+\left(r_{i}-r_{0}\right) t=500 \mathrm{gd}+\left(S \frac{q d}{\min }-S \frac{9 d}{n i n}\right) t \\
& =500 \mathrm{sd}
\end{aligned}
$$

$$
c_{0}=\frac{A}{500} \frac{1 b}{s a}
$$

pure water $\Rightarrow A(0)=0$

We have all of the pieces for our IVP. weill set it up and solve it next time.

