February 9 Math 2306 sec 58 Spring 2016

Section 6: Linear Equations Theory and Terminology
Recall that an $n^{\text {th }}$ order linear IVP consists of an equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

to solve subject to conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1} .
$$

The problem is called homogeneous if $g(x) \equiv 0$. Otherwise it is called nonhomogeneous.

Theorem: Existence \& Uniqueness

Theorem: If a_{0}, \ldots, a_{n} and g are continuous on an interval I, $a_{n}(x) \neq 0$ for each x in I, and x_{0} is any point in I, then for any choice of constants y_{0}, \ldots, y_{n-1}, the IVP has a unique solution $y(x)$ on I.

Put differently, we're guaranteed to have a solution exist, and it is the only one there is!

Example
Use only a little clever intuition to solve the IVP

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}-2 y=0, \quad y(0)=0, \quad y^{\prime}(0)=0 \\
& a_{2}(x)=1, \quad a_{1}(x)=3, \quad a_{0}(x)=-2, \quad g(x)=0
\end{aligned}
$$

all continuous on $(-\infty, \infty)$ and $a_{2}(x) \neq 0$.

Note that $y(x)=0$ is a solution. By ow the oren, it's the solution.

A Second Order Linear Boundary Value Problem

consists of a problem

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x), \quad a<x<b
$$

to solve subject to a pair of conditions ${ }^{1}$

$$
y(a)=y_{0}, \quad y(b)=y_{1}
$$

However similar this is in appearance, the existence and uniqueness result does not hold for this BVP!

[^0]BVP Examples
All solutions of the ODE $y^{\prime \prime}+4 y=0$ are of the form

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Solve the BVP

$$
y^{\prime \prime}+4 y=0, \quad 0<x<\frac{\pi}{4} \quad y(0)=0, \quad y\left(\frac{\pi}{4}\right)=0
$$

Apply $y(0)=0$

$$
\begin{gathered}
y(0)=c_{1} \cos (0)+c_{2} \sin (0)=c_{1} \cdot 1+c_{2} \cdot 0=0 \\
\Rightarrow c_{1}=0
\end{gathered}
$$

Apply $y(\pi / 4)=0$

$$
\begin{gathered}
\Rightarrow c_{1}=0 \\
y(\pi / 4)=c_{2} \sin (2 \cdot \pi / 4)=c_{2} \cdot 1=0 \Rightarrow c_{2}=0
\end{gathered}
$$

There is exactly one solution $y(x)=0$.

BVP Examples
Solve the BVP

$$
y^{\prime \prime}+4 y=0, \quad 0<x<\pi \quad y(0)=0, \quad y(\pi)=0
$$

From $y(0)=0$, we get $c_{1}=0$.
Apply $y(\pi)=0 \quad y(\pi)=c_{2} \sin (2 \pi)=c_{2} \cdot 0=0$ $c_{2} \cdot 0=0$ for all red C_{2}.
we have infinitely many solutions $y=c_{2} \operatorname{Sin}(2 x)$ for any real c_{2}.

BVP Examples
Solve the BVP

$$
y^{\prime \prime}+4 y=0, \quad 0<x<\pi \quad y(0)=0, \quad y(\pi)=1
$$

From $y(0)=0, c_{1}=0$ as before.
Apply $y(\pi)=1 . \quad y(\pi)=c_{2} \sin (2 \pi)=c_{2} \cdot 0=1$
$c_{2} \cdot 0=1$ is false for all c_{2}

This problem has no solution.

Homogeneous Equations

We'll consider the equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

and assume that each a_{i} is continuous and a_{n} is never zero on the interval of interest.

Theorem: If $y_{1}, y_{2}, \ldots, y_{k}$ are all solutions of this homogeneous equation on an interval l, then the linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)
$$

is also a solution on I for any choice of constants c_{1}, \ldots, c_{k}.
This is called the principle of superposition.

Corollaries

(i) If y_{1} solves the homogeneous equation, the any constant multiple $y=c y_{1}$ is also a solution.
(ii) The solution $y=0$ (called the trivial solution) is always a solution to a homogeneous equation.

Big Questions:

- Does an equation have any nontrivial solution(s), and
- since y_{1} and $c y_{1}$ aren't truly different solutions, what criteria will be used to call solutions distinct?

Linear Dependence

Definition: A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are said to be linearly dependent on an interval $/$ if there exists a set of constants $c_{1}, c_{2}, \ldots, c_{n}$ with at least one of them being nonzero such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } I .
$$

A set of functions that is not linearly dependent on I is said to be linearly independent on l.

This is called a linear dependence relation

Example: A linearly Dependent Set

The functions $f_{1}(x)=\sin ^{2} x, f_{2}(x)=\cos ^{2} x$, and $f_{3}(x)=1$ are linearly dependent on $I=(-\infty, \infty)$.

Note $\sin ^{2} x+\cos ^{2} x=1$ for all red x

So

$$
\sin ^{2} x+\cos ^{2} x-1=0
$$

we have $1 f_{1}(x)+1 f_{2}(x)+(-1) f_{3}(x)=0$
$c_{1}=1, c_{2}=1, c_{3}=-1$ all are nonzero

So by definition, our functions are linearly dependent on $(-\infty, \infty)$.

Example: A linearly Independent Set

The functions $f_{1}(x)=\sin x$ and $f_{2}(x)=\cos x$ are linearly independent on $I=(-\infty, \infty)$.

Let's show that $c_{1} f_{1}(x)+c_{2} f_{2}(x)=0$ for all x only works if $c_{1}=c_{2}=0$.

Suppose $\quad c_{1} \sin x+c_{2} \cos x=0$ for all red x
This must hold when $x=0$
so $c_{1} \sin 0+c_{2} \cos 0=0 \Rightarrow c_{2}=0$

The relation must hold when $x=\pi / 2$.

$$
c_{1} \sin \frac{\pi}{2}+0 \cdot \cos \frac{\pi}{2}=0 \Rightarrow c_{1}=0
$$

we cont find c_{1}, c_{2} with at least one being nonzero. Hence $f_{1}(x), f_{2}(x)$ are linearly independent on $(-\infty, \infty)$.

Determine if the set is Linearly Dependent or Independent

$$
f_{1}(x)=x^{2}, \quad f_{2}(x)=4 x, \quad f_{3}(x)=x-x^{2}
$$

A linear dependence relation would look like

$$
\begin{aligned}
& c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0 \\
& c_{1} x^{2}+c_{2}(4 x)+c_{3}\left(x-x^{2}\right)=0
\end{aligned}
$$

Con we get everything to cancel without setting all C 's to zero?
x^{2} cancels if $C_{1}=C_{3}$
x concels if $4 C_{2}=-C_{3}$

Lets set $C_{1}=2$, then $c_{3}=2$ and $c_{2}=\frac{-2}{4}=\frac{-1}{2}$

Noble $C_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=$

$$
\begin{aligned}
& 2 x^{2}+\left(\frac{-1}{2}\right)(4 x)+2\left(x-x^{2}\right)= \\
& 2 x^{2}-2 x+2 x-2 x^{2}=0
\end{aligned}
$$

We have a lin. dependence relation with $c_{1}=2, c_{2}=-\frac{1}{2}, c_{3}=2$ (not all 3 era).

Hence the functions are linearly dependent.

Definition of Wronskian

Let $f_{1}, f_{2}, \ldots, f_{n}$ posses at least $n-1$ continuous derivatives on an interval I. The Wronskian of this set of functions is the determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

(Note that, in general, this Wronskian is a function of the independent variable x.)

Determine the Wronskian of the Functions

$$
\begin{aligned}
f_{1}(x)=\sin x, & f_{2}(x)=\cos x \\
f_{1}^{\prime}(x)=\cos x & f_{2}^{\prime}(x)=-\sin x \\
W\left(f_{1}, f_{2}\right)(x) & =\left|\begin{array}{cc}
f_{1}(x) & f_{2}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x)
\end{array}\right|=\left|\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right| \\
= & \sin x(-\sin x)-\cos x(\cos x) \\
& =-\sin ^{2} x-\cos ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
& =-\left(\sin ^{2} x+\cos ^{2} x\right)=-1 \\
& \left|\begin{array}{lll}
\operatorname{col}^{2} & a_{12} & a_{13} \\
a_{11} & a_{22} & a_{23} \\
a_{21} & a_{22} & a_{1} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
&
\end{aligned}
$$

Determine the Wronskian of the Functions

$$
\begin{array}{r}
f_{1}(x)=x^{2}, \\
f_{2}(x)=4 x, \\
f_{3}^{\prime}(x)=2 x \\
f_{2}^{\prime}(x)=4 \\
f_{1}^{\prime \prime}(x)=2 \\
f_{2}^{\prime \prime}(x)=0
\end{array} f_{3}^{\prime}(x)=1-2 x x^{2}(x)=-2, ~\left|\begin{array}{lll}
f_{1} & f_{2} & f_{3} \\
f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} \\
f_{1}^{\prime \prime} & f_{2}^{\prime \prime} & f_{3}^{\prime \prime}
\end{array}\right| .
$$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
x^{2} & 4 x & x-x^{2} \\
2 x & 4 & 1-2 x \\
2 & 0 & -2
\end{array}\right| \\
& =x^{2}\left|\begin{array}{cc}
4 & 1-2 x \\
0 & -2
\end{array}\right|-4 x\left|\begin{array}{cc}
2 x & 1-2 x \\
2 & -2
\end{array}\right|+\left(x-x^{2}\right)\left|\begin{array}{cc}
2 x & 4 \\
2 & 0
\end{array}\right| \\
& =x^{2}(-8-0)-4 x(-4 x-2(1-2 x))+\left(x-x^{2}\right)(0-8) \\
& =-8 x^{2}-4 x(-4 x-2+4 x)-8\left(x-x^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-8 x^{2}+8 x-8 x+8 x^{2} \\
& =0 \\
& \quad w\left(f_{1}, f_{2}, f_{3}\right)(x)=0
\end{aligned}
$$

[^0]: ${ }^{1}$ Other conditions on y and/or y^{\prime} can be imposed. The key characteristic is that conditions are imposed at both end points $x=a$ and $x=b$.

