Final Review MATH 2253 (Ritter) Solutions

(1) Evaluate the given limits.

(a)
$$\lim_{x \to 5} \frac{x^2 - 2\varsigma}{x - 5} = 10$$

(b)
$$\lim_{x \to 0^-} \frac{|x|}{x} = -1$$

(c)
$$\lim_{t \to 9} \frac{x - 9}{3 - \sqrt{x}} = -6$$

(d)
$$\lim_{t \to 0} \frac{\csc 3t}{\csc 6t} = 2$$

(e)
$$\lim_{s \to \infty} \frac{\cos 2s}{s^2} = 0$$

(f)
$$\lim_{x \to 0} \frac{\sqrt{x^2 + 100} - 10}{x^2} = \frac{1}{20}$$

(g)
$$\lim_{x \to \pi} \frac{\cos x + 1}{x - \pi} = 0$$

(h)
$$\lim_{h \to \frac{\pi}{4}} \frac{\tan h - 1}{h - \frac{\pi}{4}} = 2$$

(2) Compute the derivative of the given function.

(a)
$$f'(t) = -2t \sin t^2$$

(b) $g'(x) = \frac{x}{\sqrt{x^2 - 4}}$
(c) $f'(x) = 7 \sin(3x+1) + 21x \cos(3x+1)$
(d) $h'(t) = -\frac{3t^2 + 4t + 1}{2\sqrt{t + 1}(t^2 - 1)^2}$
(e) $F'(x) = 3x^2 \cos(x^6) - 2x \cos(x^4)$
(f) $h'(x) = \sec(\tan x) \tan(\tan x) \sec^2 x$
(g) $G'(s) = -\frac{\sin s}{\sin(\cos s)}$
(h) $F'(t) = -\frac{1}{2t}$

(3) Find $\frac{dy}{dx}$ using implicit differentiation.

(a)
$$\frac{dy}{dx} = \frac{y^4 + y}{x - 2xy^3}$$

(b)
$$\frac{dy}{dx} = \frac{3 - \cos(x + y)}{\cos(x + y) - 2y}$$

(c)
$$\frac{dy}{dx} = \frac{\sec^2 x}{\sec y \tan y - \sec^2 y}$$

(d)
$$\frac{dy}{dx} = \frac{1 - 2xy - y^2}{x^2 + 2xy - 1}$$

(4) The top is sliding down at $\frac{3}{8}$ ft/sec (has rate of change -3/8). The angle is decreasing at a rate of $\frac{1}{16}$ per second (it's derivative is -1/16).

(5) The volume is increasing at a rate of 150 in^3 at that instant.

(6) The absolute minimum is g(-32) = -8, and the absolute maximum is g(1) = 1.

(7) Determine where the function is increasing, decreasing, concave up, and concave down. Identify all local maxima, minima, and points of inflection.

(a) *h* is increasing on $(-\infty, \sqrt{3}) \cup (\sqrt{3}, \infty)$ and decreasing on $(-\sqrt{3}, \sqrt{3})$. It is concave up on $(0, \infty)$ and concave down on $(-\infty, 0)$. *h* has an inflection at (0, 0), a local maximum at $(-\sqrt{3}, 12\sqrt{3})$, and a local minimum at $(\sqrt{3}, -12\sqrt{3})$.

(b) The domain of g is $(-\infty, 5]$. g is increasing on (0, 4) and decreasing on $(-\infty, 0) \cup (4, 5)$. It is concave up on $(-\infty, 4 - \sqrt{8/3})$ and concave down on $(4 - \sqrt{8/3}, 5)$. It has local maximum at (4, 16) and local (actually global) minimum at (0, 0). There is a point of inflection $(4 - \sqrt{8/3}, g(4 - \sqrt{8/3}))$. This is roughly (2.37, 9.09).

(8) 80,000 square meters.

(9)
$$V_{max} = \frac{40^3 \pi}{6\sqrt{3}}$$

(10) Evaluate the given integrals.

(a)
$$\int_{0}^{1} g(x) dx = 1$$
, $\int_{0}^{2} g(x) dx = 7$, $\int_{1}^{2} g(x) dx = 6$
(b) $\int_{-1}^{2} x^{2} + 3x - 1 dx = \frac{9}{2}$
(c) $\int_{0}^{\frac{\pi}{2}} \tan^{3} \frac{x}{2} \sec^{2} \frac{x}{2} dx = \frac{1}{2}$
(d) $\int_{0}^{\frac{\pi}{6}} \frac{\sin 2x}{\cos^{4} 2x} dx = \frac{7}{6}$

(e)
$$\int_{1}^{4} \frac{dy}{2\sqrt{y}(1+\sqrt{y})^{2}} = \frac{1}{6}$$

(f)
$$\int \frac{x^{3}}{\sqrt{x^{4}+1}} dx = \frac{1}{2}\sqrt{x^{4}+1} + C$$

(g)
$$\int \cot^{3} x \sec^{2} x \, dx = -\frac{1}{2}\frac{1}{\tan^{2} x} + C$$

(h)
$$\int_{0}^{\frac{\pi}{4}} (1-\sin 2t)^{3/2} \cos 2t \, dt = \frac{1}{5}$$

(12) Find the volume of the solid generated by revolving the plane region in the previous problem about

(a)
$$81\pi$$
, (b) $\frac{972\pi}{5}$

(13) 15,000 ft lbs

(14) k = 1600 N/m, and the work W = 200 J.

(15) Find any vertical and horizontal asymptotes to the graph of f given

- (a) Vert. x = -2, x = 1, Hor. y = 0
- (b) Vert. x = 0, $x = -\frac{1}{3}$, Hor. $y = -\frac{1}{3}$
- (c) Vert. x = -2, x = -4, Hor. y = -3

(16) Explain what is (horribly!) wrong with the following expressions.

(a) What if x = 0?

(b) This is crazy! The sine is a function; we can't just divorce it from its argument.

(c) This is always false. There is no x-value for which this is true.

(d) Coefficients of arguments of trigonometric functions cannot be *factored* out. This requires a property that the cosine doesn't have.

(e) The tangent and cotangent are functions requiring arguments. A cot is something you lie on, and a tan is what you get out in the sun.

(f) This is also crazy. The left side isn't defined.

(g) The conditional statement has a single solution, but this is not an identity. It appears to rely on illegitimate algebra.