Final Review MATH 2253 (Ritter) Solutions

(1) Evaluate the given limits.
(a) $\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}=10$
(b) $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=-1$
(c) $\lim _{t \rightarrow 9} \frac{x-9}{3-\sqrt{x}}=-6$
(d) $\lim _{t \rightarrow 0} \frac{\csc 3 t}{\csc 6 t}=2$
(e) $\lim _{s \rightarrow \infty} \frac{\cos 2 s}{s^{2}}=0$
(f) $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+100}-10}{x^{2}}=\frac{1}{20}$
(g) $\lim _{x \rightarrow \pi} \frac{\cos x+1}{x-\pi}=0$
(h) $\lim _{h \rightarrow \frac{\pi}{4}} \frac{\tan h-1}{h-\frac{\pi}{4}}=2$
(2) Compute the derivative of the given function.
(a) $f^{\prime}(t)=-2 t \sin t^{2}$
(b) $g^{\prime}(x)=\frac{x}{\sqrt{x^{2}-4}}$
(c) $f^{\prime}(x)=7 \sin (3 x+1)+21 x \cos (3 x+1)$
(d) $h^{\prime}(t)=-\frac{3 t^{2}+4 t+1}{2 \sqrt{t+1}\left(t^{2}-1\right)^{2}}$
(e) $\quad F^{\prime}(x)=3 x^{2} \cos \left(x^{6}\right)-2 x \cos \left(x^{4}\right)$
(f) $\quad h^{\prime}(x)=\sec (\tan x) \tan (\tan x) \sec ^{2} x$
(g) $G^{\prime}(s)=-\frac{\sin s}{\sin (\cos s)}$
(h) $\quad F^{\prime}(t)=-\frac{1}{2 t}$
(3) Find $\frac{d y}{d x}$ using implicit differentiation.
(a) $\frac{d y}{d x}=\frac{y^{4}+y}{x-2 x y^{3}}$
(b) $\frac{d y}{d x}=\frac{3-\cos (x+y)}{\cos (x+y)-2 y}$
(c) $\frac{d y}{d x}=\frac{\sec ^{2} x}{\sec y \tan y-\sec ^{2} y}$
(d) $\frac{d y}{d x}=\frac{1-2 x y-y^{2}}{x^{2}+2 x y-1}$
(4) The top is sliding down at $\frac{3}{8} \mathrm{ft} / \mathrm{sec}$ (has rate of change $-3 / 8$). The angle is decreasing at a rate of $\frac{1}{16}$ per second (it's derivative is $-1 / 16$).
(5) The volume is increasing at a rate of $150 \mathrm{in}^{3}$ at that instant.
(6) The absolute minimum is $g(-32)=-8$, and the absolute maximum is $g(1)=1$.
(7) Determine where the function is increasing, decreasing, concave up, and concave down. Identify all local maxima, minima, and points of inflection.
(a) h is increasing on $(-\infty, \sqrt{3}) \cup(\sqrt{3}, \infty)$ and decreasing on $(-\sqrt{3}, \sqrt{3})$. It is concave up on $(0, \infty)$ and concave down on $(-\infty, 0)$. h has an inflection at $(0,0)$, a local maximum at $(-\sqrt{3}, 12 \sqrt{3})$, and a local minimum at $(\sqrt{3},-12 \sqrt{3})$.
(b) The domain of g is $(-\infty, 5]$. g is increasing on $(0,4)$ and decreasing on $(-\infty, 0) \cup(4,5)$. It is concave up on $(-\infty, 4-\sqrt{8 / 3})$ and concave down on $(4-\sqrt{8 / 3}, 5)$. It has local maximum at $(4,16)$ and local (actually global) minimum at $(0,0)$. There is a point of inflection $(4-\sqrt{8 / 3}, g(4-\sqrt{8 / 3})$). This is roughly (2.37, 9.09).
(8) 80,000 square meters.
(9) $\quad V_{\max }=\frac{40^{3} \pi}{6 \sqrt{3}}$
(10) Evaluate the given integrals.
(a) $\quad \int_{0}^{1} g(x) d x=1, \quad \int_{0}^{2} g(x) d x=7, \quad \int_{1}^{2} g(x) d x=6$
(b) $\int_{-1}^{2} x^{2}+3 x-1 d x=\frac{9}{2}$
(c) $\quad \int_{0}^{\frac{\pi}{2}} \tan ^{3} \frac{x}{2} \sec ^{2} \frac{x}{2} d x=\frac{1}{2}$
(d) $\int_{0}^{\frac{\pi}{6}} \frac{\sin 2 x}{\cos ^{4} 2 x} d x=\frac{7}{6}$
(e) $\int_{1}^{4} \frac{d y}{2 \sqrt{y}(1+\sqrt{y})^{2}}=\frac{1}{6}$
(f) $\int \frac{x^{3}}{\sqrt{x^{4}+1}} d x=\frac{1}{2} \sqrt{x^{4}+1}+C$
(g) $\int \cot ^{3} x \sec ^{2} x d x=-\frac{1}{2 \tan ^{2} x}+C$
(h) $\int_{0}^{\frac{\pi}{4}}(1-\sin 2 t)^{3 / 2} \cos 2 t d t=\frac{1}{5}$
(11)18
(12) Find the volume of the solid generated by revolving the plane region in the previous problem about
(a) 81π,
(b) $\frac{972 \pi}{5}$
(13) $15,000 \mathrm{ft} \mathrm{lbs}$
(14) $k=1600 \mathrm{~N} / \mathrm{m}$, and the work $W=200 \mathrm{~J}$.
(15) Find any vertical and horizontal asymptotes to the graph of f given
(a) Vert. $\quad x=-2, \quad x=1, \quad$ Hor. $\quad y=0$
(b) Vert. $\quad x=0, \quad x=-\frac{1}{3}, \quad$ Hor. $\quad y=-\frac{1}{3}$
(c) Vert. $\quad x=-2, \quad x=-4, \quad$ Hor. $\quad y=-3$
(16) Explain what is (horribly!) wrong with the following expressions.
(a) What if $x=0$?
(b) This is crazy! The sine is a function; we can't just divorce it from its argument.
(c) This is always false. There is no x-value for which this is true.
(d) Coefficients of arguments of trigonometric functions cannot be factored out. This requires a property that the cosine doesn't have.
(e) The tangent and cotangent are functions requiring arguments. A cot is something you lie on, and a tan is what you get out in the sun.
(f) This is also crazy. The left side isn't defined.
(g) The conditional statement has a single solution, but this is not an identity. It appears to rely on illegitimate algebra.

