Final Review MATH 2253 (Ritter) Solutions

(1) Evaluate the given limits.
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(2) Compute the derivative of the given function.
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(e) F'(x) = 3x*cos(x®)—2z cos(x?)

(f) R'(z) = sec(tan ) tan(tan z) sec® x
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(3) Find g_gyc using implicit differentiation.
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(4) The top is sliding down at g ft/sec (has rate of change —3/8). The angle is decreasing at a rate of

1—16 per second (it’s derivative is —1/16).
(5) The volume is increasing at a rate of 150 in® at that instant.
(6) The absolute minimum is g(—32) = —8, and the absolute maximum is g(1) = 1.

(7) Determine where the function is increasing, decreasing, concave up, and concave down. Identify

all local maxima, minima, and points of inflection.

(a) h is increasing on (—o0, v/3) U (v/3, 00) and decreasing on (—+/3, v/3). It is concave up on (0, o)
and concave down on (—o0,0). & has an inflection at (0,0), a local maximum at (—+/3, 121/3), and
a local minimum at (v/3, —12/3).

(b) The domain of g is (—oo, 5]. g is increasing on (0, 4) and decreasing on (—o0,0) U (4,5). Itis
concave up on (—00, 4—+/8/3) and concave down on (4 —+/8/3, 5). It has local maximum at (4, 16)
and local (actually global) minimum at (0, 0). There is a point of inflection (4 —/8/3, g(4—/8/3)).
This is roughly (2.37,9.09).

(8) 80,000 square meters.
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(10) Evaluate the given integrals.
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(12) Find the volume of the solid generated by revolving the plane region in the previous problem
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(13) 15,000 ft 1bs
(14) k£ = 1600 N/m, and the work W = 200 J.

(15) Find any vertical and horizontal asymptotes to the graph of f given

(@ Vert. xr=-2, =1, Hor. y=0
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(¢ Vert. z=-2, z=-4, Hor. y=-3

(16) Explain what is (horribly!) wrong with the following expressions.

(a) What if z = 0?

(b) This is crazy! The sine is a function; we can’t just divorce it from its argument.

(c) This is always false. There is no z-value for which this is true.

(d) Coefficients of arguments of trigonometric functions cannot be factored out. This requires a
property that the cosine doesn’t have.

(e) The tangent and cotangent are functions requiring arguments. A cot is something you lie on, and
a tan is what you get out in the sun.

(f) This is also crazy. The left side isn’t defined.

(g) The conditional statement has a single solution, but this is not an identity. It appears to rely on
illegitimate algebra.



