Extra Review Questions for the Final Exam: Math 2335 (Ritter)

The final will be comprehensive. These questions cover section 5.4 and chapter 6 material not covered on previous exams.
(1) Use the central difference formula to approximate $f^{\prime}(0)$ for $h=0.1,0.05$, and 0.025 where
(a) $f(x)=\sin (x) \quad D_{0.1} f(0)=0.99833, \quad D_{0.05} f(0)=0.99958, \quad D_{0.025} f(0)=0.99990$
(b) $f(x)=\tan ^{-1}(2 x) \quad D_{0.1} f(0)=1.97396, \quad D_{0.05} f(0)=1.99337, \quad D_{0.025} f(0)=$ 1.99834
(c) $f(x)=x e^{-x} \quad D_{0.1} f(0)=0.90484, \quad D_{0.05} f(0)=0.95123, \quad D_{0.025} f(0)=0.97531$
(2) Use the method of undertermined coefficients to find an approximation to the second derivative of the form

$$
f^{\prime \prime}(x) \approx A f(x+3 h)+B f(x+2 h)+C f(x+h)+D f(x)
$$

Determine the order of the method.
$D_{h}^{(2)} f(x)=\frac{-f(x+3 h)+4 f(x+2 h)-5 f(x+h)+2 f(x)}{h^{2}}, \quad$ It's an order 2 method.
(3) A function f is known to satisfy the two conditions

$$
f^{\prime}(x)=x \ln (f(x)), \quad f(1)=e
$$

Use the forward difference approximation to $f^{\prime}(x)$ to approximate $f(1.1), f(1.2)$ and $f(1.3)$. $f(1.1) \approx 2.81828, f(1.2) \approx 2.93226, f(1.3) \approx 3.06135$
(4) Verify that the given matrices L and U constitute an $L U$ decomposition of the matrix A.

$$
A=\left[\begin{array}{rrr}
1 & 2 & 1 \\
2 & 1 & -1 \\
2 & 1 & 1
\end{array}\right], \quad L=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 1 & 1
\end{array}\right], \quad U=\left[\begin{array}{rrr}
1 & 2 & 1 \\
0 & -3 & -3 \\
0 & 0 & 2
\end{array}\right]
$$

(5) Consider the following linear system $A \mathbf{x}=\mathbf{b}$.

$$
\begin{aligned}
& 2 x_{1}-x_{2}+x_{3}=-5 \\
& x_{1} \quad+2 x_{3}=-5 \\
& -x_{1}+x_{2}-x_{3}=4
\end{aligned}
$$

(a) Construct the coefficient matrix $A . A=\left[\begin{array}{rrr}2 & -1 & 1 \\ 1 & 0 & 2 \\ -1 & 1 & -1\end{array}\right]$
(b) Find an LU decomposition $A=L U . L=\left[\begin{array}{rrr}1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & 1 & 1\end{array}\right], \quad U=\left[\begin{array}{rrr}2 & -1 & 1 \\ 0 & \frac{1}{2} & \frac{3}{2} \\ 0 & 0 & -2\end{array}\right]$
(c) Solve $L \mathbf{g}=\mathbf{b} . \quad \mathbf{g}=\left(-5,-\frac{5}{2}, 4\right)$
(d) Find $\left(x_{1}, x_{2}, x_{3}\right)$ by solving $U \mathbf{x}=\mathbf{g} . \quad \mathbf{x}=(-1,1,-2)$
(6) Show that the matrix A does not have an $L U$ decomposition.

$$
A=\left[\begin{array}{rrr}
3 & 1 & 2 \\
3 & 1 & -2 \\
6 & 1 & 3
\end{array}\right]
$$

(7) Show that the matrix $P A$ does have an $L U$ decomposition where A is the matrix from problem (5) and P is given below. To show this, find the $L U$ decomposition.

$$
P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

$L=\left[\begin{array}{rrr}1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1\end{array}\right], \quad U=\left[\begin{array}{rrr}3 & 1 & 3 \\ 0 & -1 & -1 \\ 0 & 0 & -4\end{array}\right]$

