
Fourier Series
Calculus II Project

The purpose of this project is to explore a means of expressing a periodic function in the form of a
series of basic periodic functions. We know that the functions cosx and sinx are periodic with period
2π. And, although 2π is not the fundamental period of functions of the form cosnx or sinnx (for
integer n), these are also 2π-periodic as is the sum of any such functions.

Suppose we have a function f defined on the interval [−π, π] and either not defined outside of this
interval or that is 2π-periodic. We may pose the question: Can we write f as a sum of functions of
the form cosnx and sinnx? If the answer is ”yes”, then it should be that

f(x) =
a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx) (1)

for some collection of constants a0, an, and bn (taking a0/2 is a convention that will make sense with
a little bit of context). When such an expression can be found, the right hand side of (1) is called the
Fourier series of f . If we have reason to believe that such a series exists, there are several important
questions to ask. First among them would be ”what are the coefficients?”

Carry out the following activities.

A. Let f and g be a pair of functions that are integrable on an interval [a, b]. We define the inner
product of f and g, denoted < f, g >, by

< f, g >=

∫ b

a

f(x)g(x) dx.

(This is analogous to the dot product of vectors in R2.) Show that this inner product has the following
properties:

i < f, g >=< g, f >.

ii For constant k, < kf, g >= k < f, g >.

iii For functions f , g, and h,< f, g+h >=< f, g > + < f, h >. (Here, (g+h)(x) = g(x)+h(x)

is standard addition of functions.)

iv < f, f >≥ 0 and < f, f >= 0 if and only if f(x) = 0 for every x in [a, b].

B. A pair of functions f and g are called orthogonal if < f, g >= 0. A family of functions {φn |n =

0, 1, 2, . . .} is called an orthogonal family if

< φn, φm >= 0 whenever n 6= m.



It is worth noting that orthogonality depends on the functions as well as the interval under considera-
tion.

Suppose we take the interval [−π, π] and consider the family of functions

{cos(nx), sin(mx) |n = 0, 1, 2, . . . , m = 1, 2, 3, . . .}.

This family includes the constant function cos(0x) = 1.

Show that this is an orthogonal family of functions on [−π, π]. Note that you will have to consider
several cases including a constant times a sine, a constant times a cosine, products of two sines, prod-
ucts of two cosines, and a product of a sine and a cosine. There are also infinitely many functions to
consider, so specifying values of n and m (other than the n = 0 case) is not a reasonable strategy.
Find or derive appropriate trigonometric identities to carry out the integration.

C. Now, suppose that f is defined on [−π, π] and is either not defined outside of this interval or is
2π-periodic. We wish to write f in the form of an infinite sum

f(x) =
a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx)) .

Let’s suppose for now that this is truly an equality for every x in [−π, π]. The task is to determine
what the (infinite number of) coefficients should be.

As a single example, let’s find b5 the coefficient of sin(5x) in this sum. Multiply both sides of this
sum by sin(5x) to get

f(x) sin(5x) =
a0
2
sin(5x) +

∞∑
n=1

(an cos(nx) sin(5x) + bn sin(nx) sin(5x)) .

Next, let us integrate both sides with respect to x on the interval [−π, π] under the assumption that we
may interchange the operations of summation and integration.

∫ π

−π
f(x) sin(5x) dx =

∫ π

−π

a0
2
sin(5x) dx+

∞∑
n=1

(
an

∫ π

−π
cos(nx) sin(5x) dx+ bn

∫ π

−π
sin(nx) sin(5x) dx

)
.

In light of the orthogonality property established in part B., the above reduces to

∫ π

−π
f(x) sin(5x) dx = b5

∫ π

−π
sin2(5x) dx = πb5 =⇒ b5 =

1

π

∫ π

−π
f(x) sin(5x) dx.

Generalize this result to find formulas for each of a0, an, and bn for every n ≥ 1. Based on your
findings, explain why many authors choose the constant term to be expressed as a0

2
as opposed to just



a0.

D. Consider the triangle wave function

f(x) =

{
π + x, −π ≤ x ≤ 0

π − x, 0 < x ≤ π
, f(x+ 2π) = f(x).

Find the Fourier series for f . Using appropriate technology, plot f along with some partial sums of
its Fourier series (e.g. taking the first 2, 5, 10 terms) together.

Find the Fourier series of the function defined on [−π, π]

f(x) =

{
π, −π ≤ x ≤ 0

x, 0 < x ≤ π
.

Plot this function. Also plot several partial sums of its Fourier series. Even though f is not defined
outside of the interval [−π, π], plot at least one partial sum (at least 10 nonzero terms) on the interval
[−5π, 5π]. What do you notice?

E. A notable application of Fourier series is in solving differential equations for systems subject to
periodic driving forces. Examples would include a spring mass system subject to a driving piston, or
a biological network system subjected to periodic neural impulses.

Consider the following differential equation

d2y

dx2
+ 2y =

∞∑
n=1

sin(nx)

n2
, −π < x < π. (2)

Assume that a solution y = f(x) has a series representation of the form

f(x) =
∞∑
n=1

Bn sin(nx).

Solve the differential equation to find the coefficients Bn.

For the function f(x) you found above, show that

y = f(x) + c1 cos(
√
2x) + c2 sin(

√
2x) (3)

also solves (2). The function y in (3) is called the general solution of equation (2).

F. Find some reference material on the history and applications of Fourier series and extensions to the
cases considered in the previous steps. Discuss what you find. Your discussion should address:



• If f is symmetric (even or odd) what immediate conclusions can be drawn about its Fourier
series?

• How are the coefficient formulas generalized when the interval [−π, π] is replaced by [−L,L]
for any L > 0?

• If f is not defined outside of the interval [−π, π] (or [−L,L] as the case may be), what is the
behavior of the Fourier series for x outside of this interval?

• If f has one or more finite jump discontinuities, what does the series converge to at these points?
(convergence in the mean)


