Aug. 14 Math 2253H sec. 05H Fall 2014

Section 1.4: The Tangent \& Velocity Problems

Motivational Example: Suppose a ball is dropped from the top of the Space Needle 605 feet high. According to Galileo's law, the distance $s(t)$ feet the ball has fallen after t seconds is (neglecting wind drag)

$$
s(t)=16 t^{2} .
$$

We define average velocity as
change in position \div change in time.
average velocity $=$ change in position \div change in time Find the average velocity over the period from $t=0$ to $t=2$.

$$
\text { positions: } \begin{aligned}
& S(2)=16\left(2^{2}\right)=16 \cdot 4=64 \mathrm{feet} \\
& S(0)=16\left(0^{2}\right)=16 \cdot 0=0 \mathrm{ft} \\
& \text { Avg vel }=\frac{S(2)-S(0)}{2-0}=\frac{64-0}{2}=32 \frac{\mathrm{ft}}{\mathrm{sec}}
\end{aligned}
$$

average velocity $=$ change in position \div change in time Find the average velocity over the period from $t=2$ to $t=4$.
positions: $\quad S(4)=16\left(4^{2}\right)=16 \cdot 16=256$

$$
\delta(2)=64
$$

Avg. vel $=\frac{S(4)-S(2)}{4-2}=\frac{256-64}{2}=\frac{192}{2}=96 \frac{\mathrm{ft}}{\mathrm{sec}}$
looks like $\frac{\Delta S}{\Delta t} \quad \Delta$-denotes change in

Here's a tougher question...
What is the instantaneous velocity when $t=2$?
The expression $\frac{\delta(2)-\delta(2)}{2-2}$ is nonsense.

Try letting $t=2$ and $t=2+h$
where $h \neq 0$ (bat its small)

$$
\text { Arg vel }=\frac{s(2+h)-s(2)}{2+h-2}=\frac{s(2+h)-s(2)}{h}
$$

Estimating instantaneous velocity using intervals of decreasing size...

h	$\frac{s(2+h)-s(2)}{h}$	h	$\frac{s(2+h)-s(2)}{h}$
1	80	-1	48
0.1	65.6	-0.1	62.4
0.05	64.8	-0.05	63.2
0.01	64.16	-0.01	63.84

Do the avg. velocities apperer to be approach one well defined value?

Perhaps the instantoneow velocity is

$$
64 \frac{\mathrm{ft}}{\mathrm{sec}}
$$

Slope

If we consider the independent variable t and dependent variable $y=s(t)$, we note that the velocity has the form

$$
\frac{\text { change in } y}{\text { change in } t}=\frac{\text { rise }}{\text { run }}=\text { slope. }
$$

The question is, slope of what?

Graphical Interpretations

$$
\begin{aligned}
& y_{1}=s\left(t_{1}\right) \\
& y_{2}=s\left(t_{2}\right)
\end{aligned}
$$

Figure: A secant line and a tangent line to the graph of a function.

Definitions

Given a graph of a function $y=f(x)$:
A secant line is a line connecting two points $P=\left(x_{0}, y_{0}\right)$ and $Q=\left(x_{1}, y_{1}\right)$ on the graph. The slope of a secant line is

$$
\frac{\Delta y}{\Delta x}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} .
$$

A tangent line to a curve is a line that "just touches" the curve at a point and has the same direction (a.k.a. slope or rate of change) as the curve at that point. The slope of a tangent line will require a bit of careful consideration. We'll define it as a limit of slopes of secant lines.

Example: $y=x^{2}$ Find the equation of the secant line through
(a) $(1,1)$ and $(2,4)$

$$
\frac{\Delta y}{\Delta x}=\frac{4-1}{2-1}=3
$$

$$
\text { Eqn: } \quad \begin{aligned}
y-1 & =3(x-1) \\
y & =3 x-2
\end{aligned}
$$

(b) $(1,1)$ and $(0,0)$

$$
\frac{\Delta y}{\Delta x}=\frac{0-1}{0-1}=1
$$

Eqn of secout line: $y=x$

Find the equation of the line tangent to the graph of $y=x^{2}$ at $(1,1)$.
Find the slope by doing the following:
Let $P=(1,1)$, and set $Q=\left(1+h,(1+h)^{2}\right)$ where h is a small, nonzero number. Try to deduce the slope of the tangent line by taking h smaller and smaller.

$$
\begin{aligned}
& \text { iller and smaller. } \begin{aligned}
& \frac{\Delta y}{\Delta x}=\frac{(1+h)^{2}-1^{2}}{1+h-1} \\
& \text { slope of secant line }=\frac{1+2 h+h^{2}-1}{h}=\frac{2 h+h^{2}}{h} \\
& \frac{\Delta y}{\Delta x}=\frac{\not\langle(2+h)}{h} \Rightarrow \frac{\Delta y}{\Delta x}=2+h \quad \\
& \text { for } h^{\prime \prime} \text { very small" } \quad \frac{\Delta y}{\Delta x} \approx 2
\end{aligned}
\end{aligned}
$$

Our slope will be talun to be $m=2$

The line has eqn:

$$
\begin{aligned}
y-1 & =2(x-1) \\
y & =2 x-1
\end{aligned}
$$

