Aug. 14 Math 2253H sec. 05H Fall 2014

Section 1.4: The Tangent & Velocity Problems

Motivational Example: Suppose a ball is dropped from the top of the
Space Needle 605 feet high. According to Galileo’s law, the distance
s(t) feet the ball has fallen after t seconds is (neglecting wind drag)

s(t) = 1612

We define average velocity as

change in position + change in time.
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average velocity = change in position - change in time

Find the average velocity over the period from t =0to t = 2.
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average velocity = change in position - change in time
Find the average velocity over the period from t =2 to t = 4.
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Here’s a tougher question...
What is the instantaneous velocity when t = 27
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Estimating instantaneous velocity using intervals of
decreasing size.

’ h ‘ s(2+h,)7—s(2) ‘ h ‘ s(2+hl)7—s(2) ‘
1 80 —1 48
0.1 65.6 -0.1 62.4
0.05 64.8 —0.05 63.2
0.01 64.16 —0.01 63.84
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Slope

If we consider the independent variable t and dependent variable
y = s(t), we note that the velocity has the form

change in y rise
—— = —— = slope.
changein t run

The question is, slope of what?
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Graphical Interpretations y.= sth)
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Figure: A secant line and a tangent line to the graph of a function.

() August 12, 2014 7126



Definitions

Given a graph of a function y = f(x):

A secant line is a line connecting two points P = (xo, yo) and
Q = (x4, y1) on the graph. The slope of a secant line is

Ay _yi—Y _ f(x1) — f(xo)
AX Xy — X X{—Xo

A tangent line to a curve is a line that "just touches” the curve at a
point and has the same direction (a.k.a. slope or rate of change) as
the curve at that point. The slope of a tangent line will require a bit of
careful consideration. We'll define it as a limit of slopes of secant lines.
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Example: y = x2 Find the equation of the secant line

through
(a) (1,1) and (2,4)
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(b) (1,1) and (0,0)
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Find the equation of the line tangent to the graph of

y=x2at(1,1).
Find the slope by doing the following:

Let P = (1,1), and set Q = (1 + h, (1 + h)?) where his a small,

nonzero number. Try to deduce the slope of the tangent line by taking

h smaller and smaller.
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