Aug. 14 Math 2253H sec. 05H Fall 2014

Section 1.5: Limits

Definition: Let $f(x)$ be defined on an open interval containing the point a except possibly at a. We write

$$
\lim _{x \rightarrow a} f(x)=L
$$

and say "the limit as x approaches a of $f(x)$ equals L " provided we can make f arbitrarily close to L by taking x sufficiently close to a but not equal to a.

We'll accept this definition for now and give a precise definition in section 1.7

Example: Estimate the following limit using a calculator ${ }^{1}$ Let $f(x)=\frac{x^{2}-4}{x-2}$, then f is well defined

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$ for all red $x \neq 2$.

x	$f(x)$
1	3
1.5	3.5
1.9	3.9
1.99	3.99

x	$f(x)$
3	5
2.5	4.5
2.1	4.1
2.01	4.01

It appears that

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=4
$$

Note $f(z)$ isn't defined/
${ }^{1}$ We'll learn how to do this without technology in the next sections.

Example: Estimate the following limit using a calculator
$f(t)=\frac{\sqrt{1+t}-1}{t}$ hes $\lim _{t \rightarrow 0} \frac{\sqrt{1+t}-1}{t}$
domain $\{t \backslash t \geqslant-1, t \neq 0\}$

Keeping 3 aceinal plans:

$$
\lim _{t \rightarrow 0} \frac{\sqrt{1+t}-1}{t}=\frac{1}{2}
$$

t	$f(t)$
0.1	0.488
0.01	0.499
0.001	0.500

t	$f(t)$
-0.1	0.513
-0.01	0.501
-0.001	0.500

By TI -84
$f\left(10^{12}\right)=0$

Graphical Limit \& A Limit That Doesn't Exist
Consider $H(x)=\left\{\begin{array}{ll}0, & x<0 \\ 1, & x \geq 0\end{array}\right.$. Evaluate if possible
Heaviside Step function

$$
\lim _{x \rightarrow 1} H(x), \quad \lim _{x \rightarrow 0} H(x)
$$

$$
\lim _{x \rightarrow 1} H(x)=1
$$

$\lim _{x \rightarrow 0} H(x)$ The limit does not exist we con write

$$
\lim _{x \rightarrow 0} H(x) \text { DNE }
$$

on the left $\lim _{x \rightarrow 0} H(x)$ looks like zeno on the right it looks like 1

One Sided Limits

Definition: We write

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

and say that the left hand limit (or limit from below) of $f(x)$ as x approaches a equals L provided we can make $f(x)$ arbitrarily close to L by taking x sufficiently close to but less than a.

One Sided Limits

Definition: We write

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

and say that the right hand limit (or limit from above) of $f(x)$ as x approaches a equals L provided we can make $f(x)$ arbitrarily close to L by taking x sufficiently close to but larger than a.

Theorem

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { if and only if } \lim _{x \rightarrow a^{-}} f(x)=L \quad \text { and } \lim _{x \rightarrow a^{+}} f(x)=L
$$

Limits Graphically

Figure: Graph of a function $y=f(x)$.

Evaluating Limits Using A Graph

Evaluate if possible:
(a) $\lim _{x \rightarrow 1^{-}} f(x)=4$
(b) $\lim _{x \rightarrow 1^{+}} f(x)=-2$
(c) $\lim _{x \rightarrow 1} f(x)$ DNE \quad sine $x \rightarrow 1$

Evaluating Limits Using A Graph

Evaluate if possible:
(d) $\lim _{x \rightarrow-4^{-}} f(x)=2$
(e) $\lim _{x \rightarrow-4^{+}} f(x)=2$
(f) $\quad \lim _{x \rightarrow-4} f(x)=2$

Evaluating Limits Using A Graph

Evaluate if possible:
(g) $\lim _{x \rightarrow 6} f(x)=S$
(h) $f(6)=2$
(i) $f(1)=4$

Infinite Limits
Evaluate

$$
y=\frac{1}{x^{2}}
$$

$$
\lim _{x \rightarrow 0} \frac{1}{x^{2}}
$$

The y-values become
 un bounded l) large as $x \rightarrow 0$ from either side.

Le ill write

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1}{x^{2}}= & \infty \\
& (\text { or }+\infty)
\end{aligned}
$$

Infinite Limits

Definition: Let $f(x)$ be defined on an open interval containing a except possibly at a. Then

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

provided $f(x)$ can be made arbitrarily large by taking x sufficiently close to a. (The definition of

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

is similar except that f can be made arbitrarily large and negative.)
Again, we will make precise terms like arbitrary and sufficient in section 1.7

Evaluate if possible

$$
\lim _{x \rightarrow 3^{+}} \frac{2}{x-3}=\infty
$$

$$
\lim _{t \rightarrow \frac{\pi}{2}^{-}} \tan (t)=\infty
$$

The line $x=a$ is a vertical asymptote to the graph of f if

$$
\lim _{x \rightarrow a^{-}} f(x)= \pm \infty, \quad \text { or } \quad \lim _{x \rightarrow a^{+}} f(x)= \pm \infty
$$

