Aug. 18 Math 2253H sec. 05H Fall 2014

Section 1.6 Evaluating Limits: Limit Laws

Suppose

$$
\lim _{x \rightarrow a} f(x)=L, \quad \lim _{x \rightarrow a} g(x)=M, \quad \text { and } c \text { is constant. }
$$

$\lim _{x \rightarrow a}(f(x) \pm g(x))=L \pm M$
$\lim _{x \rightarrow a} c f(x)=c L$
$\lim _{x \rightarrow a} f(x) g(x)=L M$
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M} \quad$ if $\quad M \neq 0$

Example: Using Limit Laws

$$
\lim _{x \rightarrow a} c=c \text { and } \lim _{x \rightarrow a} x=a
$$

Evaluate

$$
\begin{aligned}
\lim _{x \rightarrow 2}\left(x^{2}+3 x\right) & =\lim _{x \rightarrow 2} x^{2}+\lim _{x \rightarrow 2} 3 x \\
& =\lim _{x \rightarrow 2} x \cdot x+3 \lim _{x \rightarrow 2} x \\
& =\left(\lim _{x \rightarrow 2} x\right)\left(\lim _{x \rightarrow 2} x\right)+3 \lim _{x \rightarrow 2} x \\
& =2(2)+3(2)=4+6=10
\end{aligned}
$$

Example: Using Limit Laws

$$
\lim _{x \rightarrow a} c=c \quad \text { and } \quad \lim _{x \rightarrow a} x=a
$$

Evaluate

$$
\begin{aligned}
& \lim _{x \rightarrow-3} \frac{3 x-2}{x+5} \\
= & \frac{\lim _{x \rightarrow-3} 3 x-2}{\lim _{x \rightarrow-3} x+5}=\frac{-11}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ut } g(x)=x+5 \\
& \begin{aligned}
\lim _{x \rightarrow-3} g(x) & =\lim _{x \rightarrow-3} x+5 \\
& =\lim _{x \rightarrow-3} x+\lim _{x \rightarrow-3} 5 \\
& =-3+5=2
\end{aligned}
\end{aligned}
$$

$$
* 2 \neq 0
$$

More limit laws:

$\lim _{x \rightarrow a}(f(x))^{n}=L^{n}$
$\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{L} \quad$ (if this is defined)

If $f(x)$ is a polynomial or a rational function, and a is in the domain of f, then

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

Evaluate

$$
\begin{aligned}
& \lim _{x \rightarrow 8} \sqrt[3]{x} \\
& =\sqrt[3]{\lim _{x \rightarrow 8} x} \\
& =\sqrt[3]{8}=2
\end{aligned}
$$

Recall that

Evaluate
Let $f(u)=\frac{u+1}{u^{3}-2 u^{2}}$
$\lim _{u \rightarrow 4} \frac{u+1}{u^{3}-2 u^{2}}$

$$
=\frac{4+1}{4^{3}-2 \cdot 4^{2}}=\frac{5}{32}
$$

$$
\begin{gathered}
f(4)=\frac{4+1}{4^{3}-2 \cdot 4^{2}}=\frac{5}{64-32} \\
=\frac{5}{32}
\end{gathered}
$$

which is well defined.
So 4 is in the domain.

More Exotic Limits: Evaluate

Theorem: If $f(x)=g(x)$ for all x on an interval containing a, except possibly at a, then

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)
$$

provided this limit exists.

This means that we can use some algebraic techniques to evaluate limits. If f is too tough to handle, perhaps we can find a function g that is somehow more manageable.

More Exotic Limits: Evaluate

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

$$
=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}
$$

for $x \neq 2$

$$
\begin{aligned}
& \text { Evaluate } \\
& \text { Let } f(x)=\frac{x^{2}-4}{x-2}=\frac{(x-2)(x+2)}{x-2}
\end{aligned}
$$

$$
\frac{(x-2)(x+2)}{x-2}=x+2
$$

$$
=\lim _{x \rightarrow 2} x+2
$$

If $g(x)=x+2$ then

$$
f(x)=g(x) \text { for all } x \neq 2
$$

$$
=2+2=4
$$

$\sqrt{t+1}-1$ goes to zeno as $t \rightarrow 0$
$\lim _{t \rightarrow 0} \frac{\sqrt{t+1}-1}{t}$
To get rid of the radical, we rationalize.

$$
\frac{\sqrt{t+1}-1}{t}=\left(\frac{\sqrt{t+1}-1}{t}\right) \cdot\left(\frac{\sqrt{t+1}+1}{\sqrt{t+1}+1}\right)
$$

The conjugate of

$$
=\frac{t+1-1}{t(\sqrt{t+1}+1)}=\frac{t}{t(\sqrt{t+1}+1)}
$$

$$
=\frac{1}{\sqrt{t+1}+1} \text { for } t \neq 0
$$

we hove $f(t)=\frac{\sqrt{t+1}-1}{t}=g(t)=\frac{1}{\sqrt{t+1}+1}$
for all $t \neq 0 \quad(t \geqslant-1)$

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\sqrt{t+1}-1}{t}=\lim _{t \rightarrow 0} \frac{1}{\sqrt{t+1}+1} & =\frac{1}{1+1} \\
& =\frac{1}{2}
\end{aligned}
$$

Evaluate

$$
\begin{aligned}
& \text { Evaluate } \\
& \begin{aligned}
\lim _{r \rightarrow 0}\left(\frac{1}{r}-\frac{1}{r^{2}+r}\right) & =\lim _{r \rightarrow 0} \frac{1}{r}-\lim _{r \rightarrow 0} \frac{1}{r^{2}+r} \\
& =\frac{\lim _{r \rightarrow 0} 1}{\lim _{r \rightarrow 0} r}-\frac{\lim _{r \rightarrow 0} 1}{\lim _{r \rightarrow 0} r^{2}+r}
\end{aligned}
\end{aligned}
$$

unfirtunatels, both are undefined.
Try writing the difference as one fraction:

$$
\lim _{r \rightarrow 0}\left(\frac{1}{r}-\frac{1}{r^{2}+r}\right)=\lim _{r \rightarrow 0}\left(\frac{1}{r}-\frac{1}{r(r+1)}\right)
$$

$$
\begin{aligned}
& =\lim _{r \rightarrow 0}\left(\frac{r+1}{r(r+1)}-\frac{1}{r(r+1)}\right) \\
& =\lim _{r \rightarrow 0} \frac{r+1-1}{r(r+1)}=\lim _{r \rightarrow 0} \frac{r}{r(r+1)} \\
& =\lim _{r \rightarrow 0} \frac{1}{r+1}=\frac{1}{0+1}=1
\end{aligned}
$$

* Please dort write $\lim _{r \rightarrow 0}=1^{*}$

Perhaps we need more...
$\lim _{\theta \rightarrow 0} \theta^{2} \sin \frac{1}{\theta}$
No method thus for will facilitate taking this limit.

Squeeze Theorem:

Theorem: Suppose $f(x) \leq g(x) \leq h(x)$ for all x in an interval containing a except possibly at a. If

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L
$$

then

$$
\lim _{x \rightarrow a} g(x)=L
$$

Squeeze Theorem:

Figure: Graphical Representation of the Squeeze Theorem.

Example: Evaluate
Let $g(\theta)=\theta^{2} \sin \frac{1}{\theta}$.
$\lim _{\theta \rightarrow 0} \theta^{2} \sin \frac{1}{\theta}$
Real

$$
\begin{gathered}
\left|\sin \frac{1}{\theta}\right| \leq 1 \\
\text { ie. } \quad-1 \leq \sin \frac{1}{\theta} \leq 1
\end{gathered}
$$

Must by θ^{2}

$$
-\theta^{2} \leq \theta^{2} \sin \frac{1}{\theta} \leq \theta^{2}
$$

$$
\begin{array}{r}
\lim _{\theta \rightarrow 0}-\theta^{2}=0 \quad \lim _{\theta \rightarrow 0} \theta^{2}=0 \\
-\theta^{2}=-\left(\theta^{2}\right) \neq(-\theta)^{2}
\end{array}
$$

By the sgueese theoren

$$
\lim _{\theta \rightarrow 0} \theta^{2} \sin \frac{1}{\theta}=0
$$

