Aug. 19 Math 2253H sec. 05H Fall 2014

Sec. 1.6: A Limit Taking Overview

If $f(x)$ is made up of polynomials, roots, products, quotients, and/or trigonometric functions, try evaluating the limit by substitution (i.e. evaluate $f(a)$ if possible). If this fails, try using factoring, rationalizing, algebraic manipulation or trig. IDs.

Evaluate
$\lim _{x \rightarrow 3} \sqrt{x^{3}-4 x}=\sqrt{27-12}=\sqrt{15}$

Evaluate

$$
\begin{aligned}
\lim _{t \rightarrow 4} & \frac{t^{2}-4 t}{t^{2}-3 t-4} \quad t^{2}-3 t-4=16-12 \cdot 4=0 \\
& =\lim _{t \rightarrow 4} \frac{t(t-4)}{(t-4)(t+1)} \\
& =\lim _{t \rightarrow 4} \frac{t}{t+1}=\frac{4}{4+1}=\frac{4}{5}
\end{aligned}
$$

Evaluate

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x-2}{\sqrt{4 x+1}-3} & =\lim _{x \rightarrow 2}\left(\frac{x-2}{\sqrt{4 x+1}-3}\right) \cdot\left(\frac{\sqrt{4 x+1}+3}{\sqrt{4 x+1}+3}\right) \\
& =\lim _{x \rightarrow 2} \frac{(x-2)(\sqrt{4 x+1}+3)}{4 x+1-9} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)(\sqrt{4 x+1}+3)}{4 x-8} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)(\sqrt{4 x+1}+3)}{4(x-2)}=\lim _{x \rightarrow 2} \frac{\sqrt{4 x+1}+3}{4}=\frac{6}{4}=\frac{3}{2}
\end{aligned}
$$

Evaluate

$$
\text { * }|x|= \begin{cases}x, & x \geq 0 \\ -x, & x<0\end{cases}
$$

$$
\begin{array}{ll}
\lim _{u \rightarrow 2^{+}} \frac{|u-2|}{2-u} & |u-2|= \begin{cases}u-2, & u-2 \geqslant 0 \\
-(u-2), u-2<0\end{cases} \\
=\lim _{u \rightarrow 2^{+}} \frac{u-2}{2-u} & \begin{array}{l}
u-2 \geqslant 0 \Rightarrow u \geqslant 2 \\
u-2^{2}<0 \Rightarrow u<2
\end{array} \\
=\lim _{u \rightarrow 2^{+}} \frac{-(2-u)}{2-u} & \\
=\lim _{u \rightarrow 2^{+}} \frac{-1}{1}=-1
\end{array}
$$

Section 1.7: Precise Definition of a Limit

Recall the definition we gave back in section 1.5:
Definition: Let $f(x)$ be defined on an open interval containing the point a except possibly at a. We write

$$
\lim _{x \rightarrow a} f(x)=L
$$

and say "the limit as x approaches a of $f(x)$ equals L " provided we can make f arbitrarily close to L by taking x sufficiently close to a.

The words "arbitrary" and "sufficient" are not very precise. We can actually quantify these notions.

Motivating Example

Consider the function $f(x)= \begin{cases}2 x-1, & x \neq 3 \\ 6, & x=3\end{cases}$

$$
\begin{aligned}
& f(3)=6 \\
& \lim _{x \rightarrow 3} f(x)=5
\end{aligned}
$$

Figure: From the graph, it seems clear that $\lim _{x \rightarrow 3} f(x)=5$.

Our Example: $f(x)= \begin{cases}2 x-1, & x \neq 3 \\ 6, & x=3\end{cases}$

We consider the statement

$$
\lim _{x \rightarrow 3} f(x)=5
$$

Question: How close to 3 must x be (keeping $x \neq 3$) so that $f(x)$ is within 0.1 units of 5 ?

Closeness of two numbers
Definition: The distance between a pair of numbers a and b is the absolute value of their difference: $|a-b|$.

So to say $f(x)$ should be within 0.1 units of S we con specify

$$
|f(x)-5|<0.1
$$

To say $x \neq 3$ we can specify that

$$
|x-3| \neq 0
$$

which is equivalent to saying $|x-3|>0$.

Recall that $|a|<b$ implies

$$
-b<a<b \quad \text { for } b>0
$$

For example $\quad|f(x)-5|<0.1 \Rightarrow-0.1<f(x)-5<0.1$

Our Question Restated:
Can we find a positive number δ such that

$$
|f(x)-5|<0.1 \quad \text { if } \quad 0<|x-3|<\delta ?
$$

Note: $|x-3|<\delta \Rightarrow-\delta<x-3<\delta \Rightarrow x^{\text {is }}$

$$
3-\delta<x<3+\delta
$$

well find δ :

$$
|f(x)-5|<0.1 \Rightarrow|2 x-1-5|<0.1
$$

$$
\begin{gathered}
\Rightarrow \quad|2 x-6|<0.1 \Rightarrow|2(x-3)|<0.1 \\
\Rightarrow \quad|2||x-3|<0.1 \\
\text { ie } \quad 2|x-3|<0.1 \\
\quad|x-3|<\frac{0.1}{2}=0.05
\end{gathered}
$$

It appears that if $0<|x-3|<0.05$, then were guaranteed that

$$
|f(x)-\delta|<0.1
$$

Set $\delta=0.05$

What if we want f even closer?
Can we find a positive number δ such that

$$
\begin{aligned}
& |f(x)-5|<0.01 \text { if } 0<|x-3|<\delta ? \\
& |f(x)-\delta|<0.01 \Rightarrow \\
& \\
& \\
& 2|x-3|<0.0|\Rightarrow| x-3 \left\lvert\,<\frac{0.01}{2}=0.005\right.
\end{aligned}
$$

This would red $\delta=0.005$

Closer still?
Can we find a positive number δ such that

$$
|f(x)-5|<0.001 \quad \text { if } \quad 0<|x-3|<\delta ?
$$

Well need $2|x-3|<0.001$
giving $\delta=\frac{0.001}{2}=0.0005$

Arbitrarily Close?
If ϵ is any positive number, can we find a positive number δ such that

$$
|f(x)-5|<\epsilon \quad \text { if } \quad 0<|x-3|<\delta ?
$$

The computations dort change, we get

$$
2|x-3|<\varepsilon \Rightarrow|x-3|<\frac{\varepsilon}{2}
$$

as our condition.
we con set $\delta=\frac{\varepsilon}{2}$.

Graphical Interpretation $f(x)= \begin{cases}2 x-1, & x \neq 3 \\ 6, & x=3\end{cases}$

Figure: $|f(x)-5|<\epsilon$ if $0<|x-3|<\delta$.

Precise Definition of a Limit

Definition: Let f be defined on an open interval containing the number a except possibly at a. We write

$$
\lim _{x \rightarrow a} f(x)=L
$$

and say "the limit as x approaches a of $f(x)$ equals L " provided for every $\epsilon>0$, there exists a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \text { then }|f(x)-L|<\epsilon
$$

Figure: Graphically, the part of the curve $y=f(x)$ such that $|f(x)-L|<\epsilon$ lives in a horizontal strip. $L-\epsilon<f(x)<L+\epsilon$

Figure: The numbers x such that $|x-a|<\delta$ would have $y=f(x)$ values that live in a vertical strip.

Figure: If the limit of $f(x)$ really is L, then starting with any horizontal strip we'll be able to find a vertical one so that the curve is completely inside the intersection.

Figure: A smaller ϵ may require a smaller δ. So often, the value of δ depends on ϵ.

