Aug. 19 Math 2253H sec. 05H Fall 2014
Sec. 1.6: A Limit Taking Overview

If f(x) is made up of polynomials, roots, products, quotients, and/or
trigonometric functions, try evaluating the limit by substitution (i.e.
evaluate f(a) if possible). If this fails, try using factoring, rationalizing,
algebraic manipulation or trig. IDs.
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Section 1.7: Precise Definition of a Limit

Recall the definition we gave back in section 1.5:

Definition: Let f(x) be defined on an open interval containing the
point a except possibly at a. We write

Jm () = L

and say "the limit as x approaches a of f(x) equals L” provided we can
make f arbitrarily close to L by taking x sufficiently close to a.

The words “arbitrary” and “sufficient” are not very precise. We
can actually quantify these notions.
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Motivating Example

. _ [ 2x—1, x#3
Consider the function f(x) = 6. x =3
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Figure: From the graph, it seems clear that lim,_,3 f(x) = 5.
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_ [ 2x—=1, x#3
Our Example: f(x) = { 6. 13
We consider the statement
)I(iLns f(x) = 5.

Question: How close to 3 must x be (keeping x # 3) so that f(x) is
within 0.1 units of 57
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Closeness of two numbers

Definition: The distance between a pair of numbers a and b is the
absolute value of their difference: |a — b|.
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Our Question Restated:

Can we find a positive number ¢ such that

[f(x) =5/ < 0.1 if 0<|x—38]<¥?
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What if we want f even closer?

Can we find a positive number § such that

f(x) — 5| <0.01 if 0<|x—3|<¥?

'-P(x)-%\ <0.0l = \2x-1-%<\ <0.0)

o.0\
21%-31 < 0.0l =  |x-3) < 5 =005

This  co\) vatd §= 0.00¢§
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Closer still?

Can we find a positive number § such that

f(x) — 5| <0.001 if 0<|x—3|<d?
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Arbitrarily Close?

If € is any positive number, can we find a positive number § such that

f(x) = 5| <e if 0<]|x—3|<?
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Graphical Interpretation f(x) = 2x -1, x#3
67 X = 3
f(x) 5+e& -
is in [ 54
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Figure: |f(x) — 5] < e if 0 <|x—3| <é.

when x is in here
(x # 3)
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Precise Definition of a Limit

Definition: Let f be defined on an open interval containing the number

a except possibly at a. We write
lim f(x) =L

X—a

and say "the limit as x approaches a of f(x) equals L” provided
for every € > 0, there exists a number § > 0 such that

if O0<|x—al<d then |f(x)—L|<e
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Figure: Graphically, the part of the curve y = f(x) such that |f(x) — L| < e
lives in a horizontal strip. L —e < f(x) < L+¢
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Figure: The numbers x such that |[x — a| < § would have y = f(x) values that
live in a vertical strip.
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Figure: If the limit of f(x) really is L, then starting with any horizontal strip
we’ll be able to find a vertical one so that the curve is completely inside the
intersection.
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Figure: A smaller e may require a smaller 6. So often, the value of § depends
on e.
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