Aug. 21 Math 2253H sec. 05H Fall 2014

Section 1.7: Precise Definition of a Limit

Definition: Let f be defined on an open interval containing the number a except possibly at a. We write

$$
\lim _{x \rightarrow a} f(x)=L
$$

and say "the limit as x approaches a of $f(x)$ equals L " provided for every $\epsilon>0$, there exists a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \text { then }|f(x)-L|<\epsilon
$$

Figure: Graphically, the part of the curve $y=f(x)$ such that $|f(x)-L|<\epsilon$ lives in a horizontal strip. $L-\epsilon<f(x)<L+\epsilon$

Figure: The numbers x such that $|x-a|<\delta$ would have $y=f(x)$ values that live in a vertical strip.

Figure: If the limit of $f(x)$ really is L, then starting with any horizontal strip we'll be able to find a vertical one so that the curve is completely inside the intersection.

Figure: A smaller ϵ may require a smaller δ. So often, the value of δ depends on ϵ.

Example
Use the formal (i.e. the $\epsilon-\delta$) definition of the limit to prove the limit statement

$$
\lim _{x \rightarrow-3} \frac{x-5}{2}=-4
$$

2 phases: ${ }^{1}$ scratch work to find what δ should be, and (2) the actual formal proof.

Scratch work: $\quad f(x)=\frac{x-5}{2}, a=-3, L=-4$.
we need $|f(x)-(-4)|<\varepsilon$ whenever $|x-(-3)|<\delta$

$$
\begin{aligned}
|f(x)-(-4)| & =\left|\frac{x-5}{2}+4\right|=\left|\frac{1}{2}(x-5+8)\right|=\left|\frac{1}{2}(x+3)\right| \\
& =\frac{1}{2}|x+3|
\end{aligned}
$$

So

$$
\begin{aligned}
& |f(x)-L|<\varepsilon \Rightarrow \frac{1}{2}|x+3|<\varepsilon \\
& \Rightarrow|x+3|<2 \varepsilon
\end{aligned}
$$

$\mid t$ appears that $|f(x)-(-4)|<\varepsilon$ is equivalent

$$
\text { to } \quad|x+3|<2 \varepsilon
$$

So we will take $\delta=2 \varepsilon$.

The formal proof of the statement $\lim _{x \rightarrow-3} \frac{x-5}{2}=-4$.
Proof: Let $\varepsilon>0$. Set $\delta=2 \varepsilon$. Than $\delta>0$.
More over, if $0<|x-(-3)|<\delta$, then

$$
|x+3|<\delta=2 \varepsilon .
$$

Then $|f(x)-(-4)|=\left|\frac{x-5}{2}+4\right|=\left|\frac{1}{2}(x-5+8)\right|$

$$
=\frac{1}{2}|x+3|<\frac{1}{2} \delta=\frac{1}{2}(2 \varepsilon)=\varepsilon .
$$

That is $|f(x)-(-4)|<\varepsilon$.

Hence $\lim _{x \rightarrow-3} \frac{x-5}{2}=-4$ as required.

Graphical Illustration

Example
Use the formal (ie. the $\epsilon-\delta$) definition of the limit to prove the limit statement

$$
\lim _{x \rightarrow 0} 2 x^{2}=0
$$

Scrath: $f(x)=2 x^{2}, a=0$, and $L=0$

$$
|f(x)-L|=\left|2 x^{2}-0\right|=\left|2 x^{2}\right|=2 x^{2}
$$

well need this to be less tho ε

$$
|f(x)-L|<\varepsilon \quad \Rightarrow \quad 2 x^{2}<\varepsilon
$$

Well impose $\quad|x-0|<\delta \Rightarrow|x|<\delta$
This gives

$$
|x|^{2}<\delta^{2} \Rightarrow x^{2}<\delta^{2}
$$

$$
\Rightarrow \quad 2 x^{2}<2 \delta^{2}
$$

If we set $2 \delta^{2}=\varepsilon$ we get the required result $2 x^{2}<\varepsilon$.
we take $\delta=\sqrt{\frac{\varepsilon}{2}}$.

Proof: Let $\varepsilon>0$. Set $\delta=\sqrt{\frac{\varepsilon}{2}}$. Then $\delta>0$. If $0<|x-0|<\delta$, then
$|x|<\delta=\sqrt{\frac{\varepsilon}{2}}$. Observe then that

$$
\begin{aligned}
|f(x)-0| & =\left|2 x^{2}-0\right|=\left|2 x^{2}\right|=2 x^{2} \\
& =2|x|^{2}<2(\delta)^{2}=2\left(\sqrt{\frac{\varepsilon}{2}}\right)^{2}=2\left(\frac{\varepsilon}{2}\right)=\varepsilon .
\end{aligned}
$$

ie. $\quad\left|2 x^{2}-0\right|<\varepsilon$.

This proves that $\lim _{x \rightarrow 0} 2 x^{2}=0$.

