Aug. 21 Math 2253H sec. 05H Fall 2014

Section 1.7: Precise Definition of a Limit

Definition: Let f be defined on an open interval containing the number a except possibly at a. We write

$$
\lim _{x \rightarrow a} f(x)=L
$$

and say "the limit as x approaches a of $f(x)$ equals L " provided for every $\epsilon>0$, there exists a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \text { then }|f(x)-L|<\epsilon
$$

Example

Consider the limit statement

$$
\lim _{x \rightarrow 2}\left(x^{2}+x-3\right)=3
$$

Use a graph to find a number δ such that if $0<|x-2|<\delta$ then

$$
0<|x-2|<\delta \quad \stackrel{2+\delta}{\substack{2 \\ \\ \text { in here } x \neq 2}}
$$

$\lim _{x \rightarrow 2}\left(x^{2}+x-3\right)=3$.

$\lim _{x \rightarrow 2}\left(x^{2}+x-3\right)=3$.

we could go up to 0.020 units on the right side and up to 0.022 units on the lift.
we con take δ to be the smaller $\delta=0.02$. This guarantees that $f(x)$ is inside the vertical bond

$$
3-0.1<f(x)<3+0.1
$$

Example
Use the formal (ie. the $\epsilon-\delta$) definition of the limit to prove the limit statement

$$
\lim _{x \rightarrow 2}\left(x^{2}+x-3\right)=3
$$

Scratch work: $\quad f(x)=x^{2}+x-3, \quad a=2, \quad L=3$
weill need $|f(x)-3|<\varepsilon$.
We will impose $|x-z|<\delta$.

$$
|f(x)-3|=\left|x^{2}+x-3-3\right|=\left|x^{2}+x-6\right|=|(x+3)(x-2)|
$$

$$
=|x+3||x-2|
$$

We need to set a bound on $|x+3|$-i.e, detamine its maximumsize.

We hove $\quad|x-2|<\delta \Rightarrow-\delta<x-2<\delta$

$$
\begin{aligned}
& 2-\delta<x<2+\delta \quad \text { add } 3 \\
& 5-\delta<x+3<5+\delta
\end{aligned}
$$

Lit insist that $\delta \leqslant 1$. Then $4<x+3<6$
so then $|x+3|<6$.

Going bach $|f(x)-3|=|x+3||x-2|<6 \delta$
If (1) $|x-2|<\delta$ and
(2) $\delta \leq 1$

This motivates taking $6 \delta=\varepsilon$ ie. $\delta=\frac{\varepsilon}{6}$
we con write $\delta=\min \left\{1, \frac{\varepsilon}{6}\right\}$. This means δ is the smaller of the two. So $\delta \leq 1$ and $\delta \leq \frac{\varepsilon}{6}$.

Proof: Let $\varepsilon>0$. Set $\delta=\min \left\{1, \frac{\varepsilon}{6}\right\}$. So $\delta>0, \delta \leq 1$, and $\delta \leq \frac{\varepsilon}{6}$. Then note that if $0<|x-2|<\delta$ then
(1) $|x-2|<\delta$ and (2) $|x+3|<6$
S.

$$
\begin{aligned}
|f(x)-3|=\left|x^{2}+x-3-3\right| & =|x+3||x-2|<6 \delta \\
& \leqslant 6\left(\frac{\varepsilon}{6}\right)=\varepsilon
\end{aligned}
$$

Hence the limit statement is proved: An Ansti21,2014

