Aug. 21 Math 2253H sec. 05H Fall 2014

Section 1.7: Precise Definition of a Limit

Definition: Let *f* be defined on an open interval containing the number *a* except possibly at *a*. We write

$$\lim_{x\to a}f(x)=L$$

and say "the limit as x approaches a of f(x) equals L" provided for every $\epsilon > 0$, there exists a number $\delta > 0$ such that

if $0 < |x - a| < \delta$ then $|f(x) - L| < \epsilon$

イロト 不得 トイヨト イヨト ヨー ろくの

Example

Consider the limit statement

$$\lim_{x\to 2}(x^2+x-3)=3.$$

Use a graph to find a number δ such that if $0 < |x - 2| < \delta$ then

$$|(x^2 + x - 3) - 3| < 0.1.$$

э

イロト イポト イヨト イヨト

$$\lim_{x \to 2} (x^2 + x - 3) = 3.$$

$$f(x) = x^2 + x - 3 \begin{bmatrix} x \\ 6 \end{bmatrix}$$

æ

・ロト ・四ト ・モト ・モト

$$\lim_{x\to 2} (x^2 + x - 3) = 3.$$

August 21, 2014 4 / 25

◆□> ◆圖> ◆理> ◆理> 三連

()

We could go up to
$$0.020$$
 units
on the right side and up to
 0.022 units on the lift.
We can take δ to be the snaller
 $\delta = 0.02$. This guarantees that
f(x) is inside the vertical bond
 $3-0.1 < f(x) < 3+0.1$

Example

Use the formal (i.e. the $\epsilon\text{-}\delta)$ definition of the limit to prove the limit statement

$$\lim_{x\to 2}(x^2+x-3)=3$$

Scratch work: $f(x) = x^2 + x - 3$, a = 2, L = 3

we'll need
$$|f(x) - 3| < \varepsilon$$
.

We will impose 1x-21<8.

 $|f(x) - 3| = |x^2 + x - 3 - 3| = |x^2 + x - 6| = |(x + 3)(x - 2)|$

イロト 不得 トイヨト イヨト 二日

()

We need to get a bound on 1×+3] - i.e. determine its maximum size.

We have
$$|x-2| < \delta \Rightarrow -\delta < x-2 < \delta$$

 $a-\delta < x < 2+\delta$ add 3
 $s-\delta < x+3 < 5+\delta$
but insist that $\delta \leq 1$. Then $4 < x+3 < 6$
So then $|x+3| < 6$.

August 21, 2014 7 / 25

Going back
$$|f(x) - 3| = |x+3||x-2| < 6\delta$$

If O $|x-2| < \delta$ and
(2) $\delta \in I$
This motivates taking $6\delta = \epsilon$ i.e., $\delta = \frac{\epsilon}{6}$
We can write $\delta = \min\{1, \frac{\epsilon}{6}\}$. This means
 δ is the smaller of the two, so $\delta \in I$ and $\delta \in \frac{\epsilon}{6}$.

August 21, 2014 8 / 25

◆□> ◆圖> ◆理> ◆理> 三連

Proof: Let E >0. Set &= min {1, = 3. So $\delta > 0$, $\delta \leq 1$, and $\delta \leq \frac{\varepsilon}{6}$. Then note that if oc 1x-21 = of then () |x-21 < 8 and () |x+31 < 6 S. $|f(x)-3| = |x^2+x-3-3| = |x+3| |x-2| < 6d$ $\leq \zeta \left(\frac{\varepsilon}{6}\right) = \varepsilon$ Hence the limit statement is proved. August 21, 2014 9/25