Aug. 25 Math 2253H sec. 05H Fall 2014

Section 1.7: Precise Definition of a Limit

One Sided Limits: Note that $0 < |x - a| < \delta$ means that

$$a - \delta < x < a + \delta$$
 and $x \neq a$

We can say this with the pair of inequalities

$$a < x < a + \delta$$
 (x is to the right of a)

or

$$a - \delta < x < a$$
 (x is to the left of a)

- 34

1/31

August 22, 2014

To define one sided limits, we just use one of these two inequalities.

One Sided Limits

Definition:
$$\lim_{x \to a^+} f(x) = L$$

provided for every $\epsilon > 0$ there exists a number $\delta > 0$ such that

if $a < x < a + \delta$ then $|f(x) - L| < \epsilon$.

Definition: $\lim_{x \to a^-} f(x) = L$

provided for every $\epsilon > 0$ there exists a number $\delta > 0$ such that

if
$$a - \delta < x < a$$
 then $|f(x) - L| < \epsilon$.

Limits at Infinity

We can't really make *an interval of radius* ϵ *about infinity*. (That is, $|f(x) - \infty| < \epsilon$ doesn't make sense!) So we need a different way of characterizing $f(x) \to \infty$.

We don't try to treat ∞ like a finite number. Rather, we consider f(x) arbitrarily large by saying

for every M > 0, f(x) > M.

Limits at Infinity

Definition:
$$\lim_{x \to a} f(x) = \infty$$

provided for every M > 0 there exists a number $\delta > 0$ such that

if $0 < |x - a| < \delta$ then f(x) > M.

Definition:
$$\lim_{x \to a} f(x) = -\infty$$

provided for every M > 0 there exists a number $\delta > 0$ such that

if
$$0 < |x - a| < \delta$$
 then $f(x) < -M$.

Example

Prove the limit statement

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = \infty$$

Scretch work: $f(x) = \frac{1}{(x-1)^2}$, $a = 1$, $L = M$
Need $f(x) > M$ for any number $M > 0$
Well impose $|x-1| < d$

August 22, 2014 5 / 31

2

()

We need
$$\frac{1}{(X-1)^2} > M$$
 take the
reciprocal
 $\frac{1}{M} > (X-1)^2$ take square roots
 $\sqrt{\frac{1}{M}} > \sqrt{(X-1)^2} = |X-1|$
We have $|X-1| < \frac{1}{M}$
This motivates taking $\delta = \frac{1}{M}$.

August 22, 2014 6 / 31

୬ବ୍ଦ

・ロン ・御と ・ヨン ・ヨン 三日

()

Proof: Let M>0. Set
$$S = \frac{1}{14}$$
. Note $S>0$.
If $o < 1x-11 < S$, then
 $1x-11 < \frac{1}{34}$ so $(x-1)^{2} < \frac{1}{34}$
and taking reciproceds, we get
 $\frac{1}{(x-1)^{2}} > M$.
That is fix > M. Hence $An = f(x) = A0$.

August 22, 2014 7 / 31