Aug. 25 Math 2253H sec. 05H Fall 2014

Section 1.7: Precise Definition of a Limit

One Sided Limits: Note that $0<|x-a|<\delta$ means that

$$
a-\delta<x<a+\delta \quad \text { and } \quad x \neq a
$$

We can say this with the pair of inequalities

$$
a<x<a+\delta \quad(x \text { is to the right of } a)
$$

or

$$
a-\delta<x<a \quad(x \text { is to the left of } a)
$$

To define one sided limits, we just use one of these two inequalities.

One Sided Limits

Definition: $\lim _{x \rightarrow a^{+}} f(x)=L$
provided for every $\epsilon>0$ there exists a number $\delta>0$ such that

$$
\text { if } a<x<a+\delta \text { then }|f(x)-L|<\epsilon \text {. }
$$

Definition: $\lim _{x \rightarrow a^{-}} f(x)=L$
provided for every $\epsilon>0$ there exists a number $\delta>0$ such that

$$
\text { if } a-\delta<x<a \text { then }|f(x)-L|<\epsilon \text {. }
$$

Limits at Infinity

We can't really make an interval of radius ϵ about infinity. (That is, $|f(x)-\infty|<\epsilon$ doesn't make sense!) So we need a different way of characterizing $f(x) \rightarrow \infty$.

We don't try to treat ∞ like a finite number. Rather, we consider $f(x)$ arbitrarily large by saying

$$
\text { for every } \quad M>0, \quad f(x)>M
$$

Limits at Infinity

Definition: $\lim _{x \rightarrow a} f(x)=\infty$
provided for every $M>0$ there exists a number $\delta>0$ such that if $0<|x-a|<\delta$ then $f(x)>M$.

Definition: $\quad \lim _{x \rightarrow a} f(x)=-\infty$
provided for every $M>0$ there exists a number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \text { then } f(x)<-M \text {. }
$$

Example
Prove the limit statement

$$
\lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}}=\infty
$$

Scratch work: $\quad f(x)=\frac{1}{(x-1)^{2}}, a=1, \quad L=\infty$
Need $f(x)>M$ for any number $M>0$
weill impose $\quad|x-1|<\delta$
we need $\frac{1}{(x-1)^{2}}>M \quad$ take the reciprocal

$$
\begin{aligned}
& \frac{1}{M}>(x-1)^{2} \\
& \sqrt{\frac{1}{M}}>\sqrt{(x-1)^{2}}=|x-1|
\end{aligned}
$$

tale square roots
we have $\quad|x-1|<\frac{1}{\sqrt{M}}$
This motivates taking $\delta=\frac{1}{\sqrt{m}}$.

Proof: Let $M>0$. Set $\delta=\frac{1}{\sqrt{M}}$. Note $\delta>0$. If $0<|x-1|<\delta$, then

$$
|x-1|<\frac{1}{\sqrt{m}} \quad \text { so } \quad(x-1)^{2}<\frac{1}{M}
$$

and taking reciprocds, we get

$$
\frac{1}{(x-1)^{2}}>M
$$

That is $f(x)>M$. Hence $\lim _{x \rightarrow 1} f(x)=\infty$.

