Aug. 26 Math 2253H sec. 05H Fall 2014

Section 1.8: Continuity

Definition: A function f is continuous at a number a if

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

Three implications: $0 f(a)$ exists as afinite number,
(2) the limitexists as a finite number, (3) the limit and $f(a)$ are the same number.

A function is continuous on an interval $/$ if it is continuous at each point in I.

Formal Definition of Continuity at a Point

Defintion: Let f be defined on an open interval containing the number a. Then f is continuous at a provided for every $\epsilon>0$ there exists a number $\delta>0$ such that

$$
\text { if }|x-a|<\delta \text { then }|f(x)-f(a)|<\epsilon .
$$

Polynomials \& Rational Functions

Recall: If f is a polynomial or a rational function, and a is in the domain of f, then

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

Using the language of continuity, this tells us that
Polynomials and Rational Functions are continuous everywhere on their domains.

If a function fails to be continuous at a point, we say that it is discontinuous at that point. -it has a discontinuity at
that point

Determine where each function is discontinuous.
(a) $f(x)=\frac{x^{2}-4 x}{x^{2}-3 x-4}$

Since f is rationed, its continuous everywhere on its domain.

So we need to find values not in the domain.

$$
f(x)=\frac{x(x-4)}{(x+1)(x-4)} \quad \text { the domain is }
$$

The 2 points where f is discontin vows one -1 and 4 .
(b) $f(x)=\left\{\begin{array}{lc}2 x, & x<1 \\ x^{2}+1, & 1 \leq x<2 \\ 3, & x \geq 2\end{array}\right.$

The pieces ane polynomid hence continuous. We need to check at the points where function changes definition.

$$
\begin{aligned}
& f(1)=1^{2}+1=2 \\
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 2 x=2, \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} x^{2}+1=2 \\
& \lim _{x \rightarrow 1^{1}} f(x)=f(1)
\end{aligned}
$$

f is continuous © 1 .

Check 2: $\quad f(z)=3$

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} x^{2}+1=5
$$

$\lim _{x \rightarrow 2} f(x)$ cant equal $f(2)$
since one of the limits is 5 and

$$
f(2)=3 .
$$

f is discontinuous at 2 .

Example:

Consider the function $f(x)=\sqrt{9-x^{2}}$. Plot a rough sketch of the graph of f, and determine its domain.

Lat $y=\sqrt{9-x^{2}} \Rightarrow y^{2}=9-x^{2} \Rightarrow x^{2}+y^{2}=9$
(top half of circle of radius 3 contend e $(0,0)$)
Domain: $\quad 9-x^{2} \geqslant 0$

$$
\begin{aligned}
& x^{2} \leqslant 9 \Rightarrow \quad|x| \leqslant 3 \\
& \underbrace{\{x \mid-3 \leq x \leq 3\}}_{\text {domain }}
\end{aligned}
$$

$$
f(x)=\sqrt{9-x^{2}}
$$

Note that f is continuous on $-3<x<3$. What can be said about

$$
\lim _{x \rightarrow-3} f(x) \quad \text { or } \quad \lim _{x \rightarrow 3} f(x) ?
$$

These 2 sided limits don't exist because they require f to be defined outside its domain.

Continuity From the Left \& Right

Definition: A function f is continuous from the right at a if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a),
$$

and is continuous from the left at a if

$$
\lim _{x \rightarrow a^{-}} f(x)=f(a) .
$$

Example: $f(x)=\sqrt{9-x^{2}}$

Show that f is continuous from the right at -3 and continuous from the left at 3.

$$
\begin{aligned}
& f(-3)=\sqrt{9-(-3)^{2}}=0 \\
& \lim _{x \rightarrow-3^{+}} f(x)= \lim _{x \rightarrow-3^{+}} \sqrt{9-x^{2}}=\sqrt{9-9}=0 \\
& \text { so } \lim _{x \rightarrow-3^{+}} f(x)=f(-3)
\end{aligned}
$$

f is cont. from the right e -3 .

$$
\begin{aligned}
f(3)= & \sqrt{9-3^{2}}=0 \\
& \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} \sqrt{9-x^{2}}=0
\end{aligned}
$$

f is cont. from the left at 3 .

A Theorem on Continuous Functions

Theorem If f and g are continuous at a and for any constant c, the following are also continuous at a :

$$
(i) f+g, \quad \text { (ii) } f-g, \quad \text { (iii) } c f, \quad \text { (iv) } f g, \quad \text { and } \quad(v) \frac{f}{g}, \text { if } g(a) \neq 0
$$

Every polynomial is continuous on $(-\infty, \infty)$, and every rational function is continuous on its domain (everywhere except where the denominator is zero).

Other functions continuous on their domains are root functions and trigonometric functions.

Evaluate by substitution:

$$
\begin{aligned}
\lim _{\theta \rightarrow \pi} \frac{1-\sin \theta}{3+\cos \theta}=\frac{1-\sin \pi}{3+\cos \pi}=\frac{1}{2} \quad \lim _{\theta \rightarrow \pi} 3+\cos \theta & =3+\cos \pi \\
& =2
\end{aligned}
$$

$$
\begin{aligned}
\lim _{t \rightarrow \frac{\pi}{4}} \sec t & =\sec \frac{\pi}{4} \\
& =\sqrt{2}
\end{aligned}
$$

$\frac{\pi}{4}$ is in the domain of the secant function

Find all values of c such that f is continuous on $(-\infty, \infty)$.

$$
f(x)= \begin{cases}x+c, & x<2 \\ c x^{2}-3, & 2 \leq x\end{cases}
$$

The two pieces are polynomials, hence everywhere continuous.

We need $\lim _{x \rightarrow 2} f(x)=f(2)$.

$$
\begin{aligned}
& f(2)=c\left(2^{2}\right)-3=4 c-3 \\
& \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} x+c=2+c
\end{aligned}
$$

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} c x^{2}-3=4 c-3
$$

Continuity requires

$$
\begin{aligned}
4 c-3 & =2+c
\end{aligned} \frac{\Rightarrow}{3 c}=5 \Rightarrow c=5 / 3
$$

f is continuous on $(-\infty, \infty)$ if and only if $c=\frac{5}{3}$.

Compositions

Suppose $\lim _{x \rightarrow a} g(x)=b$, and f is continuous at b, then

$$
\lim _{x \rightarrow a} f(g(x))=f(b) \text { i.e. } \quad \lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right) \text {. }
$$

Theorem: If g is continous at a and f is continuous at $g(a)$, then $(f \circ g)(x)$ is continuous at a.

$$
(f \circ g)(x)=f(g(x))
$$

Evaluate

$$
\begin{aligned}
\lim _{x \rightarrow \pi} \cos (x+\sin x) & =\cos (\pi+\sin \pi) \quad \begin{aligned}
& y=\sin x \\
& \text { is continuous } \\
&=\cos (\pi) \\
& \text { on }(-\infty, \infty) \text { and } \\
&=-1
\end{aligned} \quad \begin{aligned}
y=\cos x
\end{aligned} \\
& \operatorname{cont} \text { is on }
\end{aligned}
$$

Theorem:
Intermediate Value Theorem (IVT) Suppose f is continuous on the closed interval $[a, b]$ and let N be any number between $f(a)$ and $f(b)$. Then there exists c in the interval (a, b) such that $f(c)=N$.

If a continuous function takes 2 values, then it must take every value between them!

