Aug. 28 Math 2253H sec. 05H Fall 2014

Intermediate Value Theorem (IVT) Suppose f is continuous on the closed interval $[a, b]$ and let N be any number between $f(a)$ and $f(b)$. Then there exists c in the interval (a, b) such that $f(c)=N$.

Conceptually: If f is continuous, and it takes on two different values $f(a)$ and $f(b)$, then it must take on all of the values between them.

IVT

Figure: Graphical depiction of the Intermediate Value Theorem

IVT: Challenge

Figure: Draw the graph of a continuous function. Start at the red dot, end at the black dot. BUT DON'T CROSS THE PINK LINE!

Application of the IVT
Show that there exists a number that is exactly one less that it's fifth power.

Let the number be x. This number must

Satisfy $\quad x=x^{5}-1$.
Let $f(x)=x-x^{5}+1$

Note: $x=x^{5}-1$ is equivalent to

$$
x-x^{5}+1=0
$$

A solution to our equation would be an x-intercept of f.
f is continuous every where
(its a poly nomial!)

$$
f(x)=x-x^{5}+1
$$

Note $f(0)=0-0+1=1$

$$
f(s)=s-s^{s}+1=6-5^{s}
$$

$$
f(0)>0 \text { and } f(5)<0
$$

So zero is between $f(0)$ and $f(5)$ f is continuous on $[0,5]$.

By the IVT, there must exist

Some c in $(0,5)$ sech that

$$
\begin{gathered}
f(c)=0 \\
0=f(c)=c-c^{s}+1 \Rightarrow c=c^{s}-1
\end{gathered}
$$

C is a number that is one less than its $\delta^{\text {th }}$ power.

Application of the IVT
Use the IVT to show that there is a solution of the equation on the specified interval.

$$
\sin x=x^{2}-x, \quad \text { on } \quad[1,2]
$$

Let $f(x)=\sin x-x^{2}+x$. Then a solution to the equation would correspond to on x-interupt of f.

Note f is continuous every whence - so it's continuous $[1,2]$.

$$
\begin{array}{ll}
f(1)=\sin (1)-1^{2}+1=\sin (1) & f(1)>0 \\
f(2)=\sin (2)-2^{2}+2=\sin (2)-2 & f(2)<0
\end{array}
$$

Zero is a number between $f(1)$ and $f(2)$. B2 the IVT, the ne exists c in $(1,2)$ such that $f(c)=0$

For this number C

$$
\begin{gathered}
0=f(c)=\sin c-c^{2}+c \Rightarrow \\
\sin c=c^{2}-c
\end{gathered}
$$

