Nov 7 Math 2253H sec. 05H Fall 2014

Section 5.2: Volumes

We'll call an object a cylinder if cross sections taken with respect to some axis are identical.

Volume of a cylinder $\mathrm{V}=$ (area of cross section) \cdot height

Figure: A circular, a parabolic, and a rectangular cylinder.

Volume of Solid by Slicing

Let the cross sectional area (the yellow shaded) at x_{i} be $A\left(x_{i}\right)$.

Figure: The total volume $V \approx A\left(x_{1}\right) \Delta x+A\left(x_{2}\right) \Delta x+\cdots+A\left(x_{n}\right) \Delta x$.

Volume of Solid by Slicing

Our volume

$$
V \approx A\left(x_{1}\right) \Delta x+A\left(x_{2}\right) \Delta x+\cdots+A\left(x_{n}\right) \Delta x=\sum_{i=1}^{n} A\left(x_{i}\right) \Delta x
$$

Volume: Let S be a solid that that lies between $x=a$ and $x=b$ having cross sectional area $A(x)$, where the cross section is in the plane through the solid perpendicular to the x-axis at each x in (a, b). The volume of S is

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(x_{i}\right) \Delta x=\int_{a}^{b} A(x) d x .
$$

An object has as its base the disk $x^{2}+y^{2} \leq 4$ in the $x y$-plane. Cross sections taken perpendicular to the x-axis are squares with one side in the plane. Find the volume of the solid.

So ara $A(x)$

$$
\begin{aligned}
A(x) & =\left(2 \sqrt{4-x^{2}}\right)^{2} \\
& =4\left(4-x^{2}\right)
\end{aligned}
$$

for $-2 \leq x \leq 2$

$$
\text { Volume } \begin{aligned}
V & =\int_{-2}^{2} 4\left(4-x^{2}\right) d x \text { using symmetry } \\
& =2 \int_{0}^{2} 4\left(4-x^{2}\right) d x \\
& =8\left(4 x-\frac{x^{3}}{3}\right)_{0}^{2} \\
& =8\left(8-\frac{8}{3}\right)=8\left(\frac{2}{3} .8\right)=8\left(\frac{16}{3}\right)=\frac{128}{3}
\end{aligned}
$$

An object has as its base the region bounded between $y=x^{2}$ and $y=4$. Cross sections taken perpendicular to the x-axis are equilateral triangles with one side in the plane. Find the volume of the solid.

$$
x^{2}=4 \Rightarrow x=2 \text { or } x=-2
$$

side length is $4-x^{2}$

November 7, $2014 \quad 8 / 42$

Area $=\frac{1}{2} b h=\frac{1}{2} l\left(\frac{\sqrt{3}}{2}\right)=\frac{\sqrt{3}}{4} l^{2}$
So $A(x)=\frac{\sqrt{3}}{4}\left(4-x^{2}\right)^{2}$, and the volume

$$
\begin{aligned}
V & =\int_{-2}^{2} \frac{\sqrt{3}}{4}\left(4-x^{2}\right)^{2} d x \quad \text { using symmetry } \\
& =2 \int_{0}^{2} \frac{\sqrt{3}}{4}\left(4-x^{2}\right)^{2} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{2} \int_{0}^{2}\left(16-8 x^{2}+x^{4}\right) d x \\
& =\frac{\sqrt{3}}{2}\left[16 x-8 \frac{x^{3}}{3}+\left.\frac{x^{5}}{5}\right|_{0} ^{2}\right. \\
& =\frac{\sqrt{3}}{2}\left[32-\frac{64}{3}+\frac{32}{5}\right] \\
& =16 \sqrt{3}\left(1-\frac{2}{3}+\frac{1}{5}\right)=16 \sqrt{3}\left(\frac{15-10+3}{15}\right) \\
& =\frac{128 \sqrt{3}}{15}
\end{aligned}
$$

November 7, $2014 \quad 10 / 42$

Solid Formed by Revolution

Consider a region bounded under the nonnegative function $y=f(x)$ for $a \leq x \leq b$. If this region is rotated about the x-axis, a solid is formed. The cross sections of this solid will be circles with radius $f(x)$. So the volume of such a solid is

$$
\text { Solid of Revolution: } \quad V=\int_{a}^{b} \pi(f(x))^{2} d x
$$

This is called the method of disks. Each very thin slice is a disk.

Figure: Start with a positive function $y=f(x)$ and the region below the curve on $[a, b]$

Figure: Revolve it about the x-axis to get a solid whose cross sections are circular disks.

Derive the formula for the volume of a cone $V=\frac{\pi}{3} r^{2} h$.

Figure: Start with the line $y=\frac{r}{h} x$ for $0 \leq x \leq h$.

Figure: And revolve this line about the x-axis to get the cone.

Th volume

$$
\begin{aligned}
V & =\int_{0}^{h} \pi\left(\frac{r}{h} x\right)^{2} d x \\
& =\int_{0}^{h} \pi \frac{r^{2}}{h^{2}} x^{2} d x=\frac{\pi r^{2}}{h^{2}} \int_{0}^{h} x^{2} d x \\
& =\frac{\pi r^{2}}{h^{2}}\left[\left.\frac{x^{3}}{3}\right|_{0} ^{h}\right. \\
& =\frac{\pi r^{2}}{h^{2}}\left[\frac{h^{3}}{3}-0\right]=\frac{\pi r^{2} h^{3}}{3 h^{2}}=\frac{\pi r^{2} h}{3}
\end{aligned}
$$

