Nov 17 Math 2253H sec. 05H Fall 2014

Section 5.2: Volumes

Solid Formed by Revolution

Consider a region bounded under the nonnegative function $y=f(x)$ for $a \leq x \leq b$. If this region is rotated about the x-axis, a solid is formed. The cross sections of this solid will be circles with radius $f(x)$. So the volume of such a solid is

$$
\text { Solid of Revolution: } \quad V=\int_{a}^{b} \pi(f(x))^{2} d x
$$

This is called the method of disks. Each very thin slice is a disk.
We can construct a similar integral for the volume of a solid of revolution for which the axis of rotation is some other horizontal or vertical line (i.e. not the x-axis)

The first quadrant region bounded between $y=4-x^{2}$ and the x and y axes is rotated about the y-axis. Find the volume of the resulting solid.

radius $=x$

$$
=\sqrt{4-y}
$$

Volume of one
disk

$$
y=4-x^{2} \Rightarrow x^{2}=4-y \Rightarrow x=\sqrt{4-y}
$$

$$
V_{D}=\pi r^{2} \Delta y
$$

$$
=\pi(4-y) \Delta y
$$

The toted Volume

$$
\begin{aligned}
V & =\int_{0}^{4} \pi(4-y) d y \\
& =\pi \int_{0}^{4}(4-y) d y \\
& =\pi\left[4 y-\left.\frac{y^{2}}{2}\right|_{0} ^{4}\right. \\
& =\pi\left[4.4-\frac{4^{2}}{2}-\left(4.0-\frac{0^{2}}{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\pi(16-8) \\
& =8 \pi
\end{aligned}
$$

The region bounded by the curves $y=\sqrt{\frac{x}{2}}, y=0$, and $x=2$ is rotated about the line $x=2$. Find the volume of the resulting solid.

radius $r=2-x=2-2 y^{2}$
ara is $\pi r^{2}=\pi\left(2-2 y^{2}\right)^{2}$

The volume of one dish is

$$
V_{D}=\pi\left(2-2 y^{2}\right)^{2} \Delta y
$$

The toted volume is

$$
V=\int_{0}^{1} \pi\left(2-2 y^{2}\right)^{2} d y
$$

$$
\begin{aligned}
& =\pi \int_{0}^{1}\left(4-8 y^{2}+4 y^{4}\right) d y \\
& =4 \pi \int_{0}^{1}\left(1-2 y^{2}+y^{4}\right) d y \\
& =4 \pi\left[y-2 \frac{y^{3}}{3}+\left.\frac{y^{5}}{5}\right|_{0} ^{1}\right. \\
& =4 \pi\left[1-2 \frac{1^{3}}{3}+\frac{1^{5}}{5}-0\right]
\end{aligned}
$$

$$
\begin{aligned}
& =4 \pi\left(1-\frac{2}{3}+\frac{1}{5}\right) \\
& =4 \pi\left(\frac{15-10+3}{15}\right)=\frac{32 \pi}{15}
\end{aligned}
$$

Washers: (solid with a solid part removed)

Suppose we consider the region bounded between two curves
$y=f(x)$ and $y=g(x)$ for $a \leq x \leq b$ with $0 \leq g(x) \leq f(x)$. If this region is rotated about the x-axis, a solid is generated with volume

$$
V=\int_{a}^{b} \pi\left((f(x))^{2}-(g(x))^{2}\right) d x
$$

This is called the method of washers. Each very thin slice is shaped like a washer (a disk with a concentric disk removed).

Find the volume of the solid obtained by rotating the region bounded between $y=\sqrt{x}$ and $y=x^{2}$ about the x-axis.

$$
\begin{aligned}
& \text { Vadius } \\
& r=y=x^{2} \\
& A(x)=\pi\left(x^{2}\right)^{2} \\
&=\pi \int_{0}^{1} \pi\left((\sqrt{x})^{2}-\left(x^{2}\right)^{2}\right) d x \\
&=\pi\left[\frac{\left.x^{4}\right) d x}{2} \frac{x^{2}}{2}-\left.\frac{x^{5}}{5}\right|_{0} ^{1}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\pi\left[\frac{1^{2}}{2}-\frac{1^{5}}{5}-0\right] \\
& =\pi\left(\frac{1}{2}-\frac{1}{5}\right)=\pi\left(\frac{5-2}{10}\right)=\frac{3 \pi}{10}
\end{aligned}
$$

Suppose we wish to find the volume of the solid obtained by rotating the first quadrant region bounded by $y=x-x^{3}$ about the y-axis.

Figure: $y=x-x^{3}$, and the solid obtained from rotation about the y-axis.

Figure: $y=x-x^{3}$. We can't find inner and outer radii (left and right functions) because we can't solve for x !!

Figure: $y=x-x^{3}$, We can rotate vertical rectangles, but we wont get disks or washers!! we get cylindrical shells.

Section 5.3: Method of Cylindrical Shells

Suppose we take a thin strip (with width Δr) that is parallel to the axis of rotation. When we revolve this, we obtain a very thin cylindrical shell with volume

$$
V=2 \pi r h \Delta r
$$

where r is the average radius (distance between strip and the axis of rotation), and h is the height of the strip.

Figure: Revolving a vertical strip about a vertical axis creates a thin cylindrical shell.

Revolution about the x-axis: Method of Shells

If the region is between the x-axis and the positive function $y=f(x)$, and the axis of revolution is the y-axis, then

$$
\Delta r=\Delta x, \quad r=x, \quad \text { and } \quad h=f(x)
$$

One shell has volume $V=2 \pi x f(x) \Delta x$. The whole solid has volume

$$
V=\int_{a}^{b} 2 \pi x f(x) d x
$$

