Nov 18 Math 2253H sec. 05H Fall 2014

Section 5.3: Method of Cylindrical Shells

Suppose we take a thin strip (with width Δr) that is parallel to the axis of rotation. When we revolve this, we obtain a very thin cylindrical shell with volume

$$
V=2 \pi r h \Delta r
$$

where r is the average radius (distance between strip and the axis of rotation), and h is the height of the strip.

Revolution about the x-axis: Method of Shells

If the region is between the x-axis and the positive function $y=f(x)$, and the axis of revolution is the y-axis, then

$$
\Delta r=\Delta x, \quad r=x, \quad \text { and } \quad h=f(x)
$$

One shell has volume $V=2 \pi x f(x) \Delta x$. The whole solid has volume

$$
V=\int_{a}^{b} 2 \pi x f(x) d x
$$

Find the volume of the solid obtained by rotating the first quadrant region bounded between $y=x-x^{3}$ and the x-axis about the y-axis.

height

$$
h=y=x-x^{3}
$$

radius

$$
r=x
$$

Volume of one cylinder

$$
V_{c}=2 \pi x\left(x-x^{3}\right) \Delta x
$$

Totd volume:

$$
\begin{aligned}
V & =\int_{0}^{1} 2 \pi x\left(x-x^{3}\right) d x \\
& =2 \pi \int_{0}^{1}\left(x^{2}-x^{4}\right) d x \\
& =2 \pi\left[\frac{x^{3}}{3}-\left.\frac{x^{5}}{5}\right|_{0} ^{1}\right. \\
& =2 \pi\left[\frac{1^{3}}{3}-\frac{1^{5}}{5}-\left(\frac{0^{3}}{3}-\frac{0^{5}}{5}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =2 \pi\left(\frac{1}{3}-\frac{1}{5}\right)=2 \pi\left(\frac{5-3}{15}\right) \\
& =\frac{4 \pi}{15}
\end{aligned}
$$

The region bound between $y=\sin \left(x^{2}\right)$ and the x-axis for $0 \leq x \leq \sqrt{\pi}$ is rotated about the y-axis. Find the volume of the resulting solid.

Volune of one cylinden

$$
V_{c}=2 \pi x \operatorname{Sin}\left(x^{2}\right) \Delta x
$$

Totel Volume

$$
\begin{aligned}
V & =\int_{0}^{\sqrt{\pi}} 2 \pi x \sin \left(x^{2}\right) d x \\
& =\pi \int_{0}^{\pi} \sin (u) d u
\end{aligned}
$$

Let

$$
u=x^{2}, \quad d u=2 x d x
$$

whon $x=0$

$$
u=0^{2}=0
$$

when $x=\sqrt{\pi}$

$$
u=(\sqrt{\pi})^{2}=\pi
$$

$$
\begin{aligned}
& =\pi\left[-\left.\cos n\right|_{0} ^{\pi}\right. \\
& =\pi[-\cos \pi-(-\cos 0)] \\
& =\pi(1+1) \\
& =2 \pi
\end{aligned}
$$

Overview Solid Formed by Revolution

Method of Disks or Washers: Take cross sections perpendicular to the axis of rotation. If the axis of rotation is the x-axis (or y-axis) then

Solid of Revolution: $\quad V=\int_{a}^{b} \pi(f(x))^{2} d x \quad\left(\right.$ or $\left.\quad V=\int_{c}^{d} \pi(f(y))^{2} d y\right)$

This can be adjusted as needed for washers (disk with a disk removed) or for other horizontal or vertical axes of rotation.

Solid Formed by Revolution

Method of Cylindrical Shells: Take cross sections parallel to the axis of rotation. For shells of thickness Δr, radius r and height h, the volume is

$$
\text { Solid of Revolution: } \quad V=\int_{a}^{b} 2 \pi r h d r .
$$

For a vertical axis of rotation, $d r=d x$ and for a horizontal one $d r=d y$. Both r and h must be expressed in terms of the variable of integration.

Solid Formed by Revolution

Figure: Performing Arts Center, Kansas City MO

Solid Formed by Revolution

Figure: Performing Arts Center, Kansas City MO

Find the volume of the solid...
The region bound between $y=x^{3}, y=0, x=1$ and $x=2$ is rotated about the y-axis.

8)

height $h=y=x^{3}$
radius $r=x$
Thichoess Δx

$$
V_{c}=2 \pi x x^{3} \Delta x=2 \pi x^{4} \Delta x
$$

Total Volure:

$$
\begin{aligned}
& V=\int_{1}^{2} 2 \pi x^{4} d x=\left.2 \pi \frac{x^{5}}{5}\right|_{1} ^{2} \\
&=\frac{2 \pi}{5}\left(2^{5}-1^{5}\right) \\
&=\frac{2 \pi}{5}(32-1)= \\
&=\frac{2 \pi}{5}(31) \\
&=\frac{62 \pi}{5}
\end{aligned}
$$

Find the volume of the solid using disks (washers)

 The region bound between $y=x$ and $y=x^{2}$ is rotated about the x-axis.

Figure: Cross section perpedicular to axis for disks/washers.

Volume of one washer

$$
\begin{aligned}
V_{w} & =\pi\left(R_{0}\right)^{2} \Delta x-\pi\left(R_{i}\right)^{2} \Delta x \\
& =\pi\left((x)^{2}-\left(x^{2}\right)^{2}\right) \Delta x
\end{aligned}
$$

Toted Volume

$$
V=\int_{0}^{1} \pi\left(x^{2}-x^{4}\right) d x
$$

Exercise: Evaluate this.

Find the volume of the solid using shells.

The region bound between $=x$ and $y=x^{2}$ is rotated about the x-axis.

$$
\begin{aligned}
& \text { radius } r=y \\
& \text { height } h=\sqrt{y}-y
\end{aligned}
$$

Figure: Cross section parallel to axis for shells.

Volume of one cylinder

$$
V_{c}=2 \pi y(\sqrt{y}-y) \Delta y
$$

total Volume

$$
V=\int_{0}^{1} 2 \pi y(\sqrt{y}-y) d y
$$

Exercise: Verify that this value is the same as the one found using wasters.

