Nov 24 Math 2253H sec. 05H Fall 2014

Section 5.5: Average Value of a Function

For a finite collection of numbers $y_{1}, y_{2}, \ldots, y_{n}$, the average (arithmetic) value is the number

$$
y_{a v g}=\frac{y_{1}+y_{2}+\cdots+y_{n}}{n} .
$$

We'd like to extend this notation to an infinite collection of numbers $y=f(x)$ for $a \leq x \leq b$.

If we take a set of sample points $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ for an equally spaced partition of $[a, b]$, we could approximate

$$
y_{\text {avg }} \approx \frac{f\left(x_{1}^{*}\right)+f\left(x_{2}^{*}\right)+\cdots+f\left(x_{n}^{*}\right)}{n}
$$

$$
y_{a v g} \approx \frac{f\left(x_{1}^{*}\right)+f\left(x_{2}^{*}\right)+\cdots+f\left(x_{n}^{*}\right)}{n}
$$

For an equally spaced partition

$$
\Delta x=\frac{b-a}{n} \Longrightarrow \frac{1}{n}=\frac{\Delta x}{b-a}
$$

So replacing n we can write

$$
y_{\text {avg }} \approx \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \frac{\Delta x}{b-a}=\frac{1}{b-a} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

We will define the average value of f on the interval $[a, b]$ as the limit of this approximation when $n \rightarrow \infty$.

Average Value of a function f on an interval $[a, b]$.

Definition: Provided f is integrable on $[a, b]$, the average value of f on $[a, b]$ is

$$
f_{a v g}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

The Mean Value Theorem for Integrals If f is continuous on $[a, b]$, then there exists a number c in (a, b) such that

$$
f(c)=f_{a v g}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

In other words, $\quad \int_{a}^{b} f(x) d x=f(c)(b-a)$.

MVT for Integrals

Figure: Mean Value Theorem Illustrated.

Find the average value of $f(x)=x-x^{2}$ on $[0,1]$.

$$
\begin{aligned}
f_{\text {avg }} & =\frac{1}{1-0} \int_{0}^{1} f(x) d x \\
& =\int_{0}^{1}\left(x-x^{2}\right) d x \\
& =\frac{x^{2}}{2}-\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\left(\frac{12}{2}-\frac{1^{3}}{3}\right)-\left(\frac{0^{2}}{2}-\frac{0^{3}}{3}\right) \\
& =\frac{1}{2}-\frac{1}{3}=\frac{3-2}{6}=\frac{1}{6}
\end{aligned}
$$

Find the average value of $f(x)=\sqrt{x}$ on $[0,4]$.
Then find the value of c that satifies the conclusion of the MVT for integrals.

$$
\begin{aligned}
f_{\text {avg }} & =\frac{1}{4-0} \int_{0}^{4} f(x) d x \\
& =\frac{1}{4} \int_{0}^{4} x^{1 / 2} d x \\
& =\left.\frac{1}{4} \frac{x^{3 / 2}}{3 / 2}\right|_{0} ^{4}=\left.\frac{1}{4} \cdot \frac{2}{3} x^{3 / 2}\right|_{0} ^{4} \\
& =\frac{1}{6}\left[4^{3 / 2}-0^{3 / 2}\right]=\frac{1}{6}[8]=\frac{4}{3}
\end{aligned}
$$

Find a value of c such that $f(c)=f_{\text {avg }}$:

$$
f(c)=\sqrt{c}=\frac{4}{3} \Rightarrow c=\left(\frac{4}{3}\right)^{2}=\frac{16}{9}
$$

Figure: Mean Value Theorem Illustrated.

Find the average value of $f(x)=\sin x$ on $\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$.

$$
\begin{aligned}
f_{\text {avg }} & =\frac{1}{\frac{3 \pi}{2}-\frac{\pi}{2}} \int_{\pi / 2}^{3 \pi / 2} f(x) d x \\
& =\frac{1}{\pi} \int_{\pi / 2}^{3 \pi / 2} \sin x d x \\
& =\frac{1}{\pi}\left[-\left.\cos x\right|_{\pi / 2} ^{3 \pi / 2}\right. \\
& =\frac{1}{\pi}\left[-\cos \left(\frac{3 \pi}{2}\right)-\left(-\cos \frac{\pi}{2}\right)\right] \\
& =\frac{1}{\pi}(0)=0
\end{aligned}
$$

Find the average value of $g(t)=\tan ^{2}(t)$ on $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$.

$$
\begin{aligned}
g_{\text {arg }} & =\frac{1}{\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)} \int_{-\pi / 4}^{\pi / 4} g(t) d t=\frac{2}{\pi} \int_{-\pi / 4}^{\pi / 4} \tan ^{2} t d t \\
& =\frac{2}{\pi} \int_{-\pi / 4}^{\pi / 4}\left(\sec ^{2} t-1\right) d t \\
& =\frac{2}{\pi}\left[\tan t-\left.t\right|_{-\pi / 4} ^{\pi / 4}\right. \\
& =\frac{2}{\pi}\left[\tan \frac{\pi}{4}-\frac{\pi}{4}-\left(\tan -\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)\right)\right] \\
& =\frac{2}{\pi}\left[2-\frac{\pi}{2}\right]=\frac{4}{\pi}-1
\end{aligned}
$$

Section 5.4 Work

The physical concept of work is the product of the force applied to an object (maginute in the direction of motion) and the distance through which the object is moved.

$$
W=F d
$$

For example, if 15 lb of horizontal force is applied to a wagon that is pulled 30 ft along the horizontal, then the work done is

$$
W=15 \times 30 \mathrm{ft} \cdot \mathrm{lb}=450 \mathrm{ft} \cdot \mathrm{lb}
$$

Work with Variable Force

Suppose we wish to move an object along the x-axis from $x=a$ to $x=b$ applying a variable force $F(x)$. We may begin by forming a partition $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$ and approximating the total work done by assuming that F is constant on each subinterval. We obtain

$$
W \approx F\left(x_{1}^{*}\right) \Delta x+F\left(x_{2}^{*}\right) \Delta x+\cdots+F\left(x_{n}^{*}\right) \Delta x
$$

We define the work in the limit as $n \rightarrow \infty$ to obtain the integral formula

$$
W=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} F\left(x_{i}^{*}\right) \Delta x=\int_{a}^{b} F(x) d x
$$

Units

American Standard: Force is given in pounds, and length in feet. The unit for work is the foot-pound (ft lb).
$\mathbf{S I}$ (International): Force is given in Newtons (N), and length is in meters. The unit for work is the Newton-meter which is also called a Joule (J).

Example
A particle is moved along the x-axis from the point $x=2$ to $x=5$ by applying a force of $F(x)=x^{2}-x$. Find the work done.

$$
\begin{aligned}
W & =\int_{a}^{b} F(x) d x \\
& =\int_{2}^{5}\left(x^{2}-x\right) d x=\frac{x^{3}}{3}-\left.\frac{x^{2}}{2}\right|_{2} ^{5} \\
& =\frac{5^{3}}{3}-\frac{5^{2}}{2}-\left(\frac{2^{3}}{3}-\frac{2^{2}}{2}\right) \\
& =\frac{125}{3}-\frac{25}{2}-\frac{8}{3}+\frac{4}{2}=\frac{117}{3}-\frac{21}{2} \\
& =39-\frac{21}{2}=\frac{78-21}{2}=\frac{57}{2}
\end{aligned}
$$

Hooke's Law

Hooke's Law says that

The force exerted on a mass by a spring is proportional to the displacement of the mass from equilibrium.

A spring has a natural length in the absence of being stretched or compressed. What Hooke's law says is that to stretch or compress a spring x units from this natural length requires a force

$$
F(x)=k x
$$

The value k is called a spring constant.

Hooke's Law

 surface
(a) Natural position of spring

(b) Stretched position of spring

Example
A force of 10 N is required to stretch a spring 25 cm from its equilibrium. Find the work done stretching the spring from its natural length of 5 cm to a length of 50 cm .

Find the force function $F(x)=k x$. We need the value of k. Given

$$
\begin{aligned}
10 \mathrm{~N} & =k(25 \mathrm{~cm})=k(0.25 \mathrm{~m}) \\
\Rightarrow \quad k & =\frac{10 \mathrm{~N}}{0.25 \mathrm{~m}}=40 \frac{\mathrm{~N}}{\mathrm{~m}}
\end{aligned}
$$

So $F(x)=40 x \mathrm{~N}$

The nature l length scm gives $x=0 \mathrm{~m}$
The complete stretched length 50 cm gives $x=0.45 \mathrm{~m}$

Work 0.45

$$
\begin{aligned}
W & =\int_{0}^{0.45}(40 \times N) d x n \\
& =\int_{0}^{0.45} 40 x d x \mathrm{~J}=\left.20 x^{2}\right|_{0} ^{0.45} \mathrm{~J} \\
& =20(0.45)^{2} \mathrm{~J}=4.05 \mathrm{~J}
\end{aligned}
$$

Example

A spring is stretched from its natural length of 1 foot to a length of 3 ft . The work done is 72 ft lb . Determine the spring constant k.

Given $W=72 \mathrm{ft} \cdot \mathrm{lb}$, and we know that

$$
\begin{aligned}
W & =\int_{a}^{b} F(x) d x=\int_{0}^{2} k x d x f t \cdot 1 b \\
72 f \cdot 1 b & =\left.k \frac{x^{2}}{2}(f t)^{2}\right|_{0} ^{2}=k\left(\frac{4}{2}-\frac{0}{2}\right) f t^{2} \\
72 f+16 & =2 k f t^{2} \Rightarrow k=\frac{72 \mathrm{ft} \cdot \mathrm{lb}}{2 \mathrm{ft}}=36 \frac{\mathrm{lb}}{\mathrm{ft}}
\end{aligned}
$$

