Nov 3 Math 2253H sec. 05H Fall 2014

Section 4.5: The Substitution Rule

Theorem: Suppose $u=g(x)$ is a differentiable function, and f is continuous on the range of g. Then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

This is often refered to as u-substitution.
This is the Chain Rule in reverse!

Evaluate each Indefinite integral using Substitution as Needed

$$
\begin{aligned}
& \text { (b) } \int t \sec ^{2}\left(t^{2}\right) d t \\
& =\int \frac{1}{2} \sec ^{2}\left(t^{2}\right) 2 t d t \\
& \text { Let } u=t^{2} \\
& d u=2 t d t \\
& \text { Note } d u=2 t d t \Rightarrow \\
& \frac{1}{2} d u=t d t \\
& =\frac{1}{2} \int \operatorname{Sec}^{2}(u) d u=\frac{1}{2} \tan (u)+C \\
& =\frac{1}{2} \tan \left(t^{2}\right)+C
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \int \frac{\cos \sqrt{x}}{\sqrt{x}} d x=\int \cos \sqrt{x} \cdot \frac{1}{\sqrt{x}} d x \\
& =\int \cos u 2 d u \\
& =2 \int \cos u d u \\
& =2 \sin u+C \\
& =2 \sin \sqrt{x}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } \\
& u=\sqrt{x} \\
& d u=\frac{1}{2 \sqrt{x}} d x \\
& \Rightarrow 2 d u=\frac{1}{\sqrt{x}} d x
\end{aligned}
$$

(d)

$$
\begin{aligned}
\int \frac{\csc ^{2} x}{\cot ^{2} x} d x=\int(\cot x)^{-2} \csc ^{2} x d x \quad \begin{array}{l}
\text { Let } \\
u
\end{array}=\cot x \\
=-\int u^{-2} d u=-\csc ^{2} x d x \\
=-\frac{u^{-1}}{-1}+C \\
=\frac{1}{u}+C=\csc ^{2} x d x
\end{aligned}
$$

A Subtle use of Substitution
Evaluate
$\int x \sqrt{x+1} d x$ by taking $u=x+1$
If we had $(x+1) \sqrt{x}=x^{3 / 2}+x^{1 / 2}$.

Let $u=x+1, d u=d x$
Subtracting 1 gives $\quad x=u-1$

$$
\int x \sqrt{x+1} d x=\int(h-1) \sqrt{u} d u
$$

$$
\begin{aligned}
& =\int(u-1) u^{1 / 2} d u \\
& =\int\left(u^{3 / 2}-u^{1 / 2}\right) d u \\
& =\frac{u^{5 / 2}}{5 / 2}-\frac{u^{3 / 2}}{3 / 2}+C \\
& =\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}+C \\
& =\frac{2}{5}(x+1)^{5 / 2}-\frac{2}{3}(x+1)^{3 / 2}+C
\end{aligned}
$$

A Subtle use of Substitution
Evaluate
$\int x \sqrt{x+1} d x$ by taking $u=\sqrt{x+1}$
Note that $u^{2}=x+1 . \quad x=u^{2}-1 \quad$ so $\quad d x=2 u d u$

$$
\begin{aligned}
& \int x \sqrt{x+1} d x=\int\left(u^{2}-1\right) u \cdot 2 u d u \\
&=2 \int\left(u^{2}-1\right) u^{2} d u \\
&=2 \int\left(u^{4}-u^{2}\right) d u
\end{aligned}
$$

$$
\begin{aligned}
& =2\left(\frac{u^{5}}{5}-\frac{u^{3}}{3}\right)+C \\
& =\frac{2}{5} u^{5}-\frac{2}{3} u^{3}+C \\
& =\frac{2}{3}(\sqrt{x+1})^{5}-\frac{2}{3}(\sqrt{x+1})^{3}+C \\
& =\frac{2}{3}(x+1)^{5 / 2}-\frac{2}{3}(x+1)^{3 / 2}+C
\end{aligned}
$$

Theorem (Substitution for Definite Integrals)

Suppose g^{\prime} is continuous on $[a, b]$ and f is continuous on the range of $u=g(x)$. Then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

Evaluate each Definite Integral

$$
\begin{array}{ll}
\text { (a) } \int_{0}^{1} x \sqrt{1-x^{2}} d x & \text { Let } \left.\begin{array}{rl}
u & =\sqrt{1-x^{2}} \\
& =\left(1-x^{2}\right)^{1 / 2} \\
=\int_{0}^{1} \sqrt{1-x^{2}} x d x & d u
\end{array}\right)=\frac{1}{2}\left(1-x^{2}\right)^{-1 / 2}(-2 x) d x \\
& =\frac{-x}{\sqrt{1-x^{2}}} d x \\
=\int_{0}^{0} u(-u) d u & d u=\frac{-x}{u} d x \\
=-\int_{1} u^{2} d u & \text { when } x=0, u=\sqrt{1-0^{2}}=1 \\
1 & \text { when } x=1, u=\sqrt{1-1^{2}}=0
\end{array}
$$

$$
\begin{aligned}
=-\left.\frac{u^{3}}{3}\right|_{1} ^{0} & =\frac{-0^{3}}{3}-\left(\frac{-1^{3}}{3}\right) \\
& =0-\left(\frac{-1}{3}\right)=\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& u=1-x^{2}, \quad d u=-2 x d x \Rightarrow \frac{-1}{2} d u=x d x \\
& \int_{0}^{1} x \sqrt{1-x^{2}} d x=-\frac{1}{2} \int_{1}^{0} \sqrt{u} d u
\end{aligned}
$$

A Geometric Interpretation

Figure: The yellow region's area is $\frac{1}{3}$. The green region also has area $\frac{1}{3}$.

Let $u=2 t-\frac{\pi}{4}$
(b) $\int_{0}^{\pi / 4} \cos \left(2 t-\frac{\pi}{4}\right) d t$
$-\frac{\pi}{4}$

$$
d u=2 d t
$$

$$
\frac{1}{2} d u=d t
$$

$=\int^{\pi / 4} \frac{1}{2} \cos u d u$

$$
=\left.\frac{1}{2} \sin u\right|_{-\pi / 4} ^{\pi / 4}
$$

when $t=0$

$$
u=2.0-\frac{\pi}{4}=\frac{-\pi}{4}
$$

when $t=\frac{\pi}{4}$

$$
u=2 \cdot \frac{\pi}{4}-\frac{\pi}{4}=\frac{\pi}{4}
$$

$$
\begin{aligned}
& =\frac{1}{2} \sin \frac{\pi}{4}-\frac{1}{2} \sin \left(\frac{-\pi}{4}\right) \\
& =\frac{1}{2} \frac{1}{\sqrt{2}}-\frac{1}{2}\left(\frac{-1}{\sqrt{2}}\right)=\frac{1}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}=\frac{2}{2 \sqrt{2}}=\frac{1}{\sqrt{2}} \\
& \int \cos (2 t-\pi / 4) d t=\frac{1}{2} \int \cos u d u=\frac{1}{2} \sin u+C \\
& =\frac{1}{2} \sin \left(2 t-\frac{\pi}{4}\right)+C
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{\pi / 4} \cos \left(2 t-\frac{\pi}{4}\right) d t & =\left.\frac{1}{2} \sin \left(2 t-\frac{\pi}{4}\right)\right|_{0} ^{\pi / 4} \\
= & \frac{1}{2} \sin \left(2 \cdot \frac{\pi}{4}-\frac{\pi}{4}\right)-\frac{1}{2} \sin \left(2 \cdot 0-\frac{\pi}{4}\right)=\frac{1}{2} \sin \frac{\pi}{4}-\frac{1}{2} \sin \left(-\frac{\pi}{4}\right) \\
& =\frac{1}{\sqrt{2}}
\end{aligned}
$$

