Nov 6 Math 2253H sec. 05H Fall 2014

Section 5.1: Area Between Curves

Consider a pair of continuous curves $y=f(x)$ and $y=g(x)$ for $a \leq x \leq b$.

Figure: The curves enclose a region. We can ask what its area is.

Figure: We can "build" the area from approximating rectangles.
hoight of rectangle $h=f\left(x_{3}^{*}\right)-g\left(x_{3}^{*}\right)$
width of rectangle $\omega=\Delta x$
area of one rectangle $h w=\left(f\left(x_{3}^{*}\right)-g\left(x_{3}^{*}\right)\right) \Delta x$

$$
A \approx \sum_{i=1}^{n}\left(f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right) \Delta x
$$

Exact one

$$
\begin{aligned}
& \text { ct are a } \\
& \begin{aligned}
A & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right) \Delta x \\
& =\int_{a}^{b}(f(x)-g(x)) d x
\end{aligned} .=\text {. }
\end{aligned}
$$

Area Between Curves:

Suppose f and g are continuous on $[a, b]$ and $f(x) \geq g(x)$. The area A bounded between the curves $y=f(x), y=g(x)$ and the lines $x=a$ and $x=b$ is

$$
A=\int_{a}^{b}(f(x)-g(x)) d x .
$$

Example
Determine the area bounded between the curves $y=\sin (x)+2$ and $y=x$ on $[0, \pi / 2]$.

$$
\begin{aligned}
A & =\int_{0}^{\pi / 2}(\sin x+2-x) d x \\
& =-\cos x+2 x-\left.\frac{x^{2}}{2}\right|_{0} ^{\pi / 2} \\
& =\left(-\cos \frac{\pi}{2}+2\left(\frac{\pi}{2}\right)-\frac{(\pi / 2)^{2}}{2}\right)-(-\cos 0+0-0)
\end{aligned}
$$

$$
\begin{aligned}
& =\pi-\frac{\pi^{2}}{8}+1 \\
& =\frac{8 \pi-\pi^{2}+8}{8}
\end{aligned}
$$

Example
Determine the area bounded between the curves $y=8-x^{2}$ and $y=2 x$.

Find points of intersection:

$$
\begin{aligned}
& 8-x^{2}=2 x \Rightarrow \\
& 0=x^{2}+2 x-8 \\
& 0=(x-2)(x+4) \\
& \Rightarrow x=2 \text { or } x=-4
\end{aligned}
$$

area

$$
\begin{aligned}
& A=\int_{-4}^{2}\left(8-x^{2}-2 x\right) d x \\
& =8 x-\frac{x^{3}}{3}-\left.x^{2}\right|_{-4} ^{2} \\
& =\left(16-\frac{8}{3}-4\right)-\left(-32+\frac{64}{3}-16\right) \\
& =12-\frac{8}{3}+48-\frac{64}{3}=60-\frac{72}{3}=60-24 \\
& =36
\end{aligned}
$$

The condition $f(x) \geq g(x)$

Consider the curves $y=x^{3}$ and $y=x$. These bound a region, but the curves switch places.

Figure: Curves $y=x^{3}$ and $y=x$.

Area Between Curves:

Suppose f and g are continuous on $[a, b]$. The area A bounded between the curves $y=f(x), y=g(x)$ and the lines $x=a$ and $x=b$ is

$$
A=\int_{a}^{b}|f(x)-g(x)| d x
$$

Example
Find the area bounded between the curves $y=\cos 2 x, y=\sin x$, $x=0$ and $x=\frac{\pi}{2}$.

$$
A=\int_{0}^{\pi / 2}|\cos 2 x-\sin x| d x
$$

Find the intersection:

$$
\begin{gathered}
\cos 2 x=\sin x \\
1-2 \sin ^{2} x=\sin x \\
0=2 \sin ^{2} x+\sin x-1 \\
0=(2 \sin x-1)(\sin x+1)
\end{gathered}
$$

$$
\begin{aligned}
& \Rightarrow \quad \sin x=\frac{1}{2} \quad \text { or } \quad \sin x=-1 \\
& \text { no solution on }\left[0, \frac{\pi}{2}\right] \\
& \sin x=\frac{1}{2} \Rightarrow x=\frac{\pi}{6} \\
& \text { for } 0 \leq x \leq \frac{\pi}{2} \\
& A=\int_{0}^{\pi / 2}|\cos 2 x-\sin x| d x \\
& =\int_{0}^{\pi / 6}(\cos 2 x-\sin x) d x+\int_{\pi / 6}^{\pi / 2}(\sin x-\cos 2 x) d x \\
& =\frac{1}{2} \sin 2 x+\left.\cos x\right|_{0} ^{\pi / 6}+\left[-\cos x-\left.\frac{1}{2} \sin 2 x\right|_{\pi / 6} ^{\pi / 2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \sin \frac{\pi}{3}+\cos \frac{\pi}{6}-\left(\frac{1}{2} \sin 0+\cos 0\right)+\left[-\cos \frac{\pi}{2}-\frac{1}{2} \sin \pi-\left(-\cos \frac{\pi}{6}-\frac{1}{2} \sin \frac{\pi}{3}\right)\right] \\
& =\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{2}-1+\left[\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{4}\right] \\
& =\sqrt{3}+\frac{\sqrt{3}}{2}-1 \quad=\frac{3 \sqrt{3}}{2}-1 \\
& \int \cos 2 x d x=\int \frac{1}{2} \cos \omega d u \quad \text { Let } u=2 x \quad d u=2 d x \\
& =\frac{1}{2} \sin u+C=\frac{1}{2} \sin 2 x+C \quad \begin{array}{l}
\frac{1}{2} d u=d x
\end{array}
\end{aligned}
$$

Horizontal Orientation

A region may be better described by curves $x=f(y)$ and $x=g(y)$, $c \leq y \leq d$

Figure: A horizontally oriented region.

$$
A=\int^{d}|f(y)-g(y)| d y
$$

