Nov 7 Math 2253H sec. 05H Fall 2014

Section 5.1: Area Between Curves

Horizontal Orientation

The area A bounded between the continuous curves $x=f(y)$, $x=g(y)$ and the horizontal lines $y=c$ and $y=d$ is

$$
A=\int_{c}^{d}|f(y)-g(y)| d y .
$$

Note that the condition $f(y) \geq g(y)$ would mean that the curve $x=f(y)$ is to the right of the curve $x=g(y)$.

Find the area bounded between $x=y^{2}-1$ and

 $y=\frac{x-2}{2}$.

Figure: Region enclosed by $y=\frac{x-2}{2}$ and $y= \pm \sqrt{x+1}$ (a.k.a $x=y^{2}-1$).

$$
y=\frac{x-2}{2} \Rightarrow 2 y=x-2 \Rightarrow x=2 y+2
$$

The two curves are $x=y^{2}-1$ and $x=2 y+2$

Find the intersections: $\quad y^{2}-1=2 y+2 \Rightarrow$

$$
\begin{gathered}
y^{2}-2 y-3=0 \Rightarrow(y+1)(y-3)=0 \\
\Rightarrow y=-1 \text { or } y=3
\end{gathered}
$$

Area $A=\int_{-1}^{3}\left(2 y+2-\left(y^{2}-1\right)\right) d y$

$$
\begin{aligned}
& =\int_{-1}^{3}\left(2 y+2-y^{2}+1\right) d y \\
& =\int_{-1}^{3}\left(2 y+3-y^{2}\right) d y \\
& =y^{2}+3 y-\left.\frac{y^{3}}{3}\right|_{-1} ^{3} \\
& =\left(3^{2}+3 \cdot 3-\frac{3^{3}}{3}\right)-\left((-1)^{2}+3(-1)-\frac{(-1)^{3}}{3}\right) \\
& \quad=9-\left(-2+\frac{1}{3}\right)=11-\frac{1}{3}=\frac{33-1}{3}=\frac{32}{3}
\end{aligned}
$$

Section 5.2: Volumes

We'll call an object a cylinder if cross sections taken with respect to some axis are identical.

Volume of a cylinder $V=$ (area of cross section) $)$ height

Figure: A circular, a parabolic, and a rectangular cylinder.

Volume of Solid by Slicing

Figure: Suppose we have a solid that isn't actually a cylinder.

Volume of Solid by Slicing (Motivated by Bread)

Figure: Suppose we wish to find the volume of a loaf of bread.

Volume of Solid by Slicing (Motivated by Bread)

Figure: We can slice the loaf into pieces, and add the volumes of the slices.

Volume of Solid by Slicing

Figure: We place our solid over an x-axis for $a \leq x \leq b$. And consider a cross section at some x value.

Volume of Solid by Slicing

Figure: If we take slices at x and $x+\Delta x$ and remove a piece, it is nearly a cylinder of volume $V=A(x) \Delta x$.

Volume of Solid by Slicing

Figure: The total volume $V \approx A\left(x_{1}\right) \Delta x+A\left(x_{2}\right) \Delta x+\cdots+A\left(x_{n}\right) \Delta x$.

Volume of Solid by Slicing

Our volume

$$
V \approx A\left(x_{1}\right) \Delta x+A\left(x_{2}\right) \Delta x+\cdots+A\left(x_{n}\right) \Delta x=\sum_{i=1}^{n} A\left(x_{i}\right) \Delta x
$$

Volume: Let S be a solid that that lies between $x=a$ and $x=b$ having cross sectional area $A(x)$, where the cross section is in the plane through the solid perpendicular to the x-axis at each x in (a, b). The volume of S is

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(x_{i}\right) \Delta x=\int_{a}^{b} A(x) d x .
$$

An object has as its base the disk $x^{2}+y^{2} \leq 4$ in the $x y$-plane. Cross sections taken perpendicular to the x-axis are squares with one side in the plane. Find the volume of the solid.

Weill pick this up next time.
The button below tokes you to a java applet illustrating this situation.

