Oct 13 Math 2253H sec. 05H Fall 2014

Homework Problem (sec. 3.3): Show that the inflection points of the curve $y=x \sin x$ lie on the curve defined by

$$
y^{2}\left(x^{2}+4\right)=4 x^{2} .
$$

We found that $y^{\prime \prime}=2 \cos x-x \sin x$. So that an inflection point would require

$$
y^{\prime \prime}=0 \quad \Longrightarrow \quad 2 \cos x=x \sin x \quad \text { i.e. } \quad x=2 \cot x .
$$

Since $y=x \sin x$, the condition $y^{\prime \prime}=0$ can also be interpreted as requiring

$$
2 \cos x=y .
$$

$$
\begin{aligned}
y^{2}\left(x^{2}+4\right) & =4 x^{2} \\
x=2 \cot x \quad \Rightarrow \quad x^{2}=4 \cot ^{2} x \quad \text { so } \quad x^{2}+4 & =4 \cot ^{2} x+4 \\
& =4\left(\cot ^{2} x+1\right) \\
& =4 \csc ^{2} x
\end{aligned}
$$

Hence

$$
\begin{aligned}
y^{2}\left(x^{2}+4\right) & =(2 \cos x)^{2} 4 \csc ^{2} x \\
& =4 \cos ^{2} x 4 \csc ^{2} x \\
& =16 \frac{\cos ^{2} x}{\sin ^{2} x} \\
& =16 \cot ^{2} x \\
& =4\left(4 \cot ^{2} x\right)=4 x^{2} \quad \text { as required. }
\end{aligned}
$$

Section 3.7: Applied Optimization
Find the volume of the largest right circular cylinder that can be inscribed in a sphere of radius 10 .

Slice the sphere dong a great circh and look at the cross section

Let r and h be the radius and height of the cylinder.

Volume

$$
V=\pi r^{2} h
$$

objective

$$
\begin{aligned}
(2 r)^{2}+h^{2} & =20^{2} \quad \text { constraint } \\
4 r^{2}+h^{2} & =20^{2} \\
4 r^{2} & =20^{2}-h^{2} \Rightarrow r^{2}=\frac{1}{4}\left(20^{2}-h^{2}\right)
\end{aligned}
$$

So $\quad V=\pi\left(\frac{1}{4}\left(20^{2}-h^{2}\right)\right) h=\frac{\pi}{4}\left(20^{2} h-h^{3}\right), 0<h<20$

Find crit \#:
$V^{\prime}(h)=\frac{\pi}{4}\left(20^{2}-3 h^{2}\right) \quad V^{\prime}(h)$ is nem undetined

$$
V^{\prime}(h)=0 \Rightarrow \frac{\pi}{4}\left(20^{2}-3 h^{2}\right)=0
$$

$$
\begin{aligned}
& \Rightarrow 20^{2}-3 h^{2}=0 \Rightarrow h^{2}=\frac{20^{2}}{3} \\
& \Rightarrow h=\frac{20}{\sqrt{3}} \text { or } h=\frac{-20}{\sqrt{3}} \text { inn ore } \sin \quad h>0
\end{aligned}
$$

Use $2^{n d}$ der. Lest to see if we hove a maximizer.

$$
\begin{aligned}
V^{\prime \prime}(h) & =\frac{\pi}{4}(-6 h)=-\frac{3 \pi}{2} h \\
& V^{\prime \prime}\left(\frac{20}{\sqrt{3}}\right)=-\frac{3 \pi}{2}\left(\frac{20}{\sqrt{3}}\right)<0
\end{aligned}
$$

V is concave down @ $\frac{20}{\sqrt{3}}$. we have a max.

$$
\begin{aligned}
V\left(\frac{20}{\sqrt{3}}\right) & =\frac{\pi}{4}\left(20^{2}\left(\frac{20}{\sqrt{3}}\right)-\left(\frac{20}{\sqrt{3}}\right)^{3}\right) \\
& =\frac{\pi}{4}\left(\frac{20^{3}}{\sqrt{3}}-\frac{20^{3}}{3 \sqrt{3}}\right) \\
& =\frac{20^{3} \pi}{4 \sqrt{3}}\left(1-\frac{1}{3}\right) \\
& =\frac{20^{3} \pi}{4 \sqrt{3}}\left(\frac{2}{3}\right)=\frac{20^{3} \pi}{6 \sqrt{3}} \approx 2418.4
\end{aligned}
$$

The maximum volume is about 2418.4 cubic units.

Your Turn!
The sum of twice a number and a second number is 32 . Find the maximum value of the product of these two numbers.

Calling the numbers k and V

$$
2 k+v=32
$$

The product $S^{\prime}=k v$.
From the top equation

$$
v=32-2 k
$$

So $\quad S=k(32-2 k)=32 k-2 k^{2}$
$S^{\prime}(k)=32-4 k, S^{\prime}$ is clways defined

$$
\begin{aligned}
& S^{\prime}(k)=0 \Rightarrow 32-4 k=0 \\
& \quad \Rightarrow k=8 \\
& S^{\prime \prime}(k)=-4 \text { so } S^{\prime \prime}(8)=-4<0
\end{aligned}
$$

we hove a mox

$$
k=8 \Rightarrow \quad v=32-2 \cdot 8=16
$$

The maximum product is

$$
S=8(16)=128
$$

Section 3.9 Antiderivatives

Definition: A function F is called an antiderivative of f on an interval I if

$$
F^{\prime}(x)=f(x) \text { for all } x \text { in } I .
$$

For example, $F(x)=x^{2}$ is an antiderivative of $f(x)=2 x$ on $(-\infty, \infty)$. Similarly, $G(x)=\tan x+7$ is an antiderivative of $g(x)=\sec ^{2} x$ on ($-\pi / 2, \pi / 2$).

Theorem: If F is any antiderivative of f on an interval I, then the most general antiderivative of f on $/$ is
$F(x)+C$ where C is an arbitrary constant.

Find the most general antiderivative of f.

(a) $f(x)=\cos x \quad I=(-\infty, \infty)$

$$
F(x)=\sin x+C
$$

(b) $\quad f(x)=\sin x \quad I=(-\infty, \infty)$

$$
F(x)=-\cos x+C
$$

Find the most general antiderivative of f.
(c) $f(x)=\csc x \cot x \quad I=(-\pi, 0)$

$$
F(x)=-\csc x+C
$$

pow rule

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

(d) $f(x)=\frac{1}{x^{3}} \quad I=(0, \infty)$
$f(x)=x^{-3}$
wed need

A condidote is

$$
n-1=-3
$$

$$
n=-2
$$

$$
F(x)=\frac{-1}{2} x^{-2}+C
$$

$F(x)=A x^{-2}$ for some constant A

$$
F^{\prime}(x)=-2 A x^{-3}=x^{-3} \text { if }-2 A=1
$$

