Oct 14 Math 2253H sec. 05H Fall 2014

Section 3.9 Antiderivatives
Definition: A function F is called an antiderivative of f on an interval /

if
F'(x) = f(x) forall xin I.

Theorem: If F is any antiderivative of f on an interval /, then the most

general antiderivative of f on / is

F(x)+ C where C is an arbitrary constant.
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Some general results’:

|

Function | Particular Antiderivative || Function | Particular Antiderivative |
cf(x) cF(x) COoS X sinx
f(x) + g(x) F(x) + G(x) sin x —COS X
X" n# -1 ’;,—J:; sec? x tan x
Pov.)gf r‘v&k <‘1w~
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Find the most general antiderivative of h(x) = x+/x on (0, o).
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'We'll use the term particular antiderivative to refer to any antiderivative
that has no arbitrary constant in it.
()
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Example
Determine the function H(x) that satisfies the following conditions

H'(x) = xv/x, forall x >0,and H(1) =0.
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Example

A particle moves along the x-axis so that its acceleration at time t is
given by

a(t) =12t -2 m/sec?.

At time t = 0, the velocity v and position s of the particle are known to
be

v(0) =3 m/sec,and s(0) =4 m.
Find the position s(t) of the particle for all t > 0.
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Example

A differential equation is an equation that involves the derivative(s) of

an unknown function. Solving such an equation would mean finding
such an unknown function.

Solve the differential equation subject to the given initial conditions.
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Section 4.1: Area Under a Positive Curve

Suppose f is a continuous function that is positive on the interval

a < x < b. We can consider a region in the xy-plane bounded below
by the x-axis, above by the curve y = f(x) and on the sides by vertical
segments of the lines x = aand x = b.

Question: Can we find the area of such a region?

y o)
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Figure: Region under a positive curve y = f(x) on an interval [a, b].
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Figure: We could approximate the area by filling the space with rectangles.
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Figure: We could approximate the area by filling the space with rectangles.

() October 13, 2014 13/30



fix)

¥

fix)

¥

Fix

a x X oxg b

left-end point

v

a xjpx, x; b

right-end point

R 2

v

a X Xy Xy b X

midpoint

Figure: Some choices as to how to define the heights.
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Approximating Area Using Rectangles

We can experiment with
» Which points to use for the heights (left, right, middle, other....)

» How many rectangles we use

to try to get a good approximation.

Definition: We will define the true area to be value we obtain taking
the limit as the number of rectangles goes to +oo.
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Some terminology

» A Partition P of an interval [a, b] is a collection of points
{Xo0, X1, ..., Xn} such that

a=Xg< Xy < Xo<---<Xp=Db.
» A Subinterval is one of the intervals x;_; < x < x; determined by
a partition.
» The width of a subinterval is denoted Ax; = x; — x;_1. If they are
all the same size (equal spacing), then

Ax = b; 2 and this is called the norm of the partition.

» A set of sample points is a set {x], X3, ..., X5 } such that
Xi—1 < X < X.

Taking the number of rectangles to o is the same as taking the width
Ax — 0.
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Example: Write an equally spaced partition of the interval [0, 2] with
the specified number of subintervals, and determine the norm Ax.
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