Oct 14 Math 2253H sec. 05H Fall 2014

Section 3.9 Antiderivatives

Definition: A function F is called an antiderivative of f on an interval I if

$$F'(x) = f(x)$$
 for all x in I.

Theorem: If F is any antiderivative of f on an interval I, then the most general antiderivative of f on I is

F(x) + C where C is an arbitrary constant.

A D N A D N A D N A D

Find the most general antiderivative of

$$f(x) = x^{n}, \text{ where } n = 1, 2, 3, \dots \qquad \text{if } Ax^{k} = kAx^{k-1}$$

$$we want \quad kAx^{k-1} = f(x) = x^{n} \qquad A_{jk} \text{ are } constant$$
This requires
$$k - 1 = n \quad and \\ kA = 1$$
So
$$k = n + 1 \quad and \quad (n+1)A = 1 \implies A = \frac{1}{n+1}$$
This gives
$$F(x) = \frac{1}{n+1}x^{n+1} + C$$

October 13, 2014 2 / 30

イロト イヨト イヨト イヨト

power rule for derivation

()

Some general results¹:

Function	Particular Antiderivative	Function	Particular Antiderivative
Cf(x)	cF(x)	COS X	sin x
f(x) + g(x)	F(x) + G(x)	sin x	$-\cos x$
$x^n, n \neq -1$	$\frac{x^{n+1}}{n+1}$	sec ² x	tan x
power rule for			
antiderivatives			

¹We'll use the term particular antiderivative to refer to any antiderivative that has no arbitrary constant in it.

October 13, 2014

3/30

Example

Determine the function H(x) that satisfies the following conditions

$$H'(x) = x\sqrt{x}, \text{ for all } x > 0, \text{ and } H(1) = 0.$$

From the last example, all functions such that $H'(x) = x\sqrt{x}$
have the form
$$H(x) = \frac{2}{5} x^{5/2} + C \qquad \text{impose } H(1) = 0$$

$$\text{set } x = 1 \quad \text{and} \quad H = 0$$

$$0 = |H(1) = \frac{2}{5} (1)^{2} + C$$

$$0 = \frac{2}{5} + C \implies C = \frac{2}{5}$$

$$\int_{0}^{5_{0}} H(x) = \frac{2}{5} x^{5/2} - \frac{2}{5}$$

$$0 = |H(x) = \frac{2}{5} x^{5/2} - \frac{2}{5}$$

Example

A particle moves along the *x*-axis so that its acceleration at time *t* is given by

$$a(t) = 12t - 2$$
 m/sec².

At time t = 0, the velocity v and position s of the particle are known to be

$$v(0) = 3$$
 m/sec, and $s(0) = 4$ m.

Find the position s(t) of the particle for all t > 0.

To get velocity, take on ontiderivative of acadenation

$$V(t) = 12 \frac{t^{(H)}}{1+1} - 2t + C$$

$$= Gt^{2} - 2t + C \qquad \text{impose} \quad V(0) = 3$$

$$3 = V(0) = (c(0)^{2} - 2(0) + C \implies C = 3$$

()

$$V(t) = 6t^{2} - 2t + 3$$
To get S, take on antidervolve of V.

$$S(t) = 6 \frac{t^{2+1}}{2+1} - 2 \frac{t^{(4)}}{1+1} + 3t + C$$

$$S(t) = 2t^{3} - t^{2} + 3t + C \qquad \text{impose}$$

$$S(t) = 2(0)^{2} - 0^{2} + 3(0) + C \implies (=4)$$

$$V = S(0) = 2(0)^{2} - 0^{2} + 3t + 4 \qquad (=4)$$

$$S_{0} \qquad S(t) = 2t^{3} - t^{2} + 3t + 4 \qquad (=5)$$

$$October 13,2014 \qquad 6/30$$

6/30

Example

A **differential equation** is an equation that involves the derivative(s) of an unknown function. **Solving** such an equation would mean finding such an unknown function.

Solve the differential equation subject to the given *initial* conditions.

$$\frac{d^2y}{dx^2} = \cos x + 2, \quad y(0) = 0, \quad y'(0) = -1$$

Take an ontiderivative of both sides
$$\frac{dy}{dx} = \sin x + 2x + C$$

Take another antidervative

$$-1 = y'(0) = S(n(0) + 2(0) + C \implies C = -1$$

$$0 = y(0) = -\omega_1(0) + 0^2 - 1(0) + k$$

$$0 = -1 + k \implies k = 1$$

October 13, 2014 9 / 30

()

Section 4.1: Area Under a Positive Curve

Suppose *f* is a continuous function that is positive on the interval $a \le x \le b$. We can consider a region in the *xy*-plane bounded below by the *x*-axis, above by the curve y = f(x) and on the sides by vertical segments of the lines x = a and x = b.

Question: Can we find the area of such a region?

Figure: Region under a positive curve y = f(x) on an interval [a, b].

Figure: We could approximate the area by filling the space with rectangles.

Figure: We could approximate the area by filling the space with rectangles.

Figure: Some choices as to how to define the heights.

Approximating Area Using Rectangles

We can experiment with

- Which points to use for the heights (left, right, middle, other....)
- How many rectangles we use

to try to get a good approximation.

Definition: We will define the true area to be value we obtain taking the limit as the number of rectangles goes to $+\infty$.

Some terminology

• A **Partition** *P* of an interval [a, b] is a collection of points $\{x_0, x_1, ..., x_n\}$ such that

 $a = x_0 < x_1 < x_2 < \cdots < x_n = b.$

- ► A Subinterval is one of the intervals x_{i-1} ≤ x ≤ x_i determined by a partition.
- ► The width of a subinterval is denoted Δx_i = x_i x_{i-1}. If they are all the same size (equal spacing), then

$$\Delta x = \frac{b-a}{n}$$
, and this is called the **norm** of the partition.

► A set of **sample points** is a set $\{x_1^*, x_2^*, ..., x_n^*\}$ such that $x_{i-1} \le x_i^* \le x_i$.

Taking the number of rectangles to ∞ is the same as taking the width $\Delta x \rightarrow 0$.

October 13, 2014

16/30

Example: Write an equally spaced partition of the interval [0, 2] with the specified number of subintervals, and determine the norm Δx .

(a) For
$$n = 4$$

 $\Delta \chi = \frac{2 - 0}{4} = \frac{1}{2}$
 $x_0 = 0$, $x_1 = \frac{1}{2}$
 $x_2 = 1$
 $x_3 = \frac{3}{2}$
 $x_1 = 2$
Note $\chi_1 = \chi_0 + i\Delta \chi$, $i = 1, 2, 3, 4$
(b) For $n = 6$
 $\Delta \chi = \frac{2 - 0}{6} = \frac{1}{3}$
 $\chi_0 = 0$
 $\chi_1 = \frac{1}{3}$
 $\chi_2 = \frac{1}{3}$
 $\chi_3 = \frac{1}{3}$
 $\chi_5 = \frac{1}{3}$