Oct 17 Math 2253H sec. 05H Fall 2014

Section 4.2: The Definite Integral

We saw that a sum of the form

$$
f\left(x_{1}^{*}\right) \Delta x+f\left(x_{2}^{*}\right) \Delta x+\cdots+f\left(x_{n}^{*}\right) \Delta x
$$

approximated the area of a region if f was continuous and positive. And that under these conditions, the limit

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\lim _{n \rightarrow \infty}\left[f\left(x_{1}^{*}\right) \Delta x+f\left(x_{2}^{*}\right) \Delta x+\cdots+f\left(x_{n}^{*}\right) \Delta x\right]
$$

was the value of this area.
Can we generalize this dropping the requirement that f is positive? that f is continuous?

Definition (Definite Integral)

Let f be defined on an interval $[a, b]$. Let

$$
x_{0}=a<x_{1}<x_{2}<\cdots<x_{n}=b
$$

be any partition of $[a, b]$, and $\left\{x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right\}$ be any set of sample points. Then the definite integral of f from a to b is denoted and defined by

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

provided this limit exists. Here, the limit is taken over all possible partitions of $[a, b]$.

Terms and Notation

- Riemann Sum: any sum of the form $f\left(x_{1}^{*}\right) \Delta x+f\left(x_{2}^{*}\right) \Delta x+\cdots+f\left(x_{n}^{*}\right) \Delta x$
- Integral Symbol/Sign: \int (a stretched "S" for "sum")
- Integrable: If the limit does exists, f is said to be integrable on [a, b]
- Limits of Integration: a is called the lower limit of integration, and b is the upper limit of integration
- Integrand: the expression " $f(x)$ " is called the integrand
- Differential: $d x$ is called a differential, it indicates what the variable is and can be thought of as the limit of Δx (just as it is in the derivative notation " $\frac{d y}{d x}$ ").
- Dummy Variable/Variable of Integration: the variable that appears in both the integrand and in the differential. For example, if the differential is $d x$, the dummy variable is x; it the differential is $d u$, the dummy variable is u

$$
\int_{0}^{b} f(x) d x
$$

Important Remarks

(1) If the integral does exist, it is a number. That is, it does not depend on the dummy variable of integration. The following are equivalent.

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t=\int_{a}^{b} f(q) d q
$$

(2) The definite integral is a limit of Riemann Sums!
(3) If f is positive and continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\text { the area under the curve. }
$$

What if f is continuous, but not always positive?

Figure: A function that changes signs on $[a, b]$. (Here, $f(x)=\cos x, a=0$ and $b=2 \pi$; the partition has 15 subintervals.)

Figure: The same function but with 50 subintervals.

Figure: $\int_{a}^{b} f(x) d x=$ area of gray region - area of yellow region

Example
Use area to evaluate the integral $\int_{0}^{3}(2-x) d x$.

$$
\int_{0}^{3}(2-x) d x=\text { gray area - yellow area }
$$

gray part

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
& =\frac{1}{2}(2)(2) \\
& =2
\end{aligned}
$$

yellow part

$$
\begin{aligned}
\sum_{1} \quad A & =\frac{1}{2} b h \\
& =\frac{1}{2}(1)(1)=\frac{1}{2}
\end{aligned}
$$

$$
\int_{0}^{3}(2-x) d x=2-\frac{1}{2}=\frac{3}{2}
$$

