Oct 24 Math 2253H sec. 05H Fall 2014

Section 4.2: The Definite Integral

Properties of Definite Integrals

Suppose that f and g are integable on $[a, b]$ and let c be constant.
(1) $\int_{a}^{b} c d x=c(b-a)$
(2) $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
(3) $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$

Properties of Definite Integrals Continued...

(4) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$
(5) $\int_{a}^{a} f(x) d x=0$
(6) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$

Properties of Definite Integrals Continued...

(7) If $f(x) \leq g(x)$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$
(8) And, as an immediate consequence of (7) and (1), if $m \leq f(x) \leq M$ for $a \leq x \leq b$, then

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

Example Problems:
(1) Evaluate the integral using areas and the properties.

$$
\begin{align*}
& \int_{2}^{0} \sqrt{4-x^{2}} d x \\
& =-\int_{0}^{2} \sqrt{4-x^{2}} d x \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& f(x)=\sqrt{4-x^{2}} \quad y=\sqrt{4-x^{2}} \\
& y^{2}=4-x^{2} \Rightarrow x^{2}+y^{2}=4
\end{aligned}
$$

property

Shaded

$$
\begin{aligned}
\text { care } & =\frac{1}{4} \pi(2)^{2} \\
& =\pi
\end{aligned}
$$

So

$$
\int_{2}^{0} \sqrt{4-x^{2}} d x=-\pi
$$

(2) Use the given properties to argue that

$$
6 \leq \int_{0}^{3} \sqrt{4+t^{2}} d t \leq 3 \sqrt{13}
$$

proputy (8) if $m \leq f(x) \leq M$ on $[a, b]$ than

$$
\begin{aligned}
& m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a) \\
& f(t)=\sqrt{4+t^{2}} \text { for } 0 \leq t \leq 3
\end{aligned}
$$

Lock for abs. max and min. Find crit. \#

$$
f^{\prime}(t)=\frac{1}{2}\left(4+t^{2}\right)^{-1 / 2} \cdot(2 t)=\frac{t}{\sqrt{4+t^{2}}}
$$

$f^{\prime}(t)=0 \Rightarrow t=0, f^{\prime}(t)$ undefined $\sqrt{4+t^{2}}=0$ no soln.

$$
\begin{aligned}
f(0)=\sqrt{4+0^{2}} & =\sqrt{4}=2 \leftarrow \text { abs min } \\
f(3)=\sqrt{4+3^{2}} & =\sqrt{13} \quad \leftarrow \text { abs max } \\
2 & \leq f(t) \leq \sqrt{13} \text { on }[0,3]
\end{aligned}
$$

s.

$$
\begin{aligned}
2(3-0) & \leq \int_{0}^{3} \sqrt{4+t^{2}} d t \leq \sqrt{13}(3-0) \\
6 & \leq \int_{0}^{3} \sqrt{4+t^{2}} d t \leq 3 \sqrt{13}
\end{aligned}
$$

(3) Given $\int_{0}^{5} f(x) d x=7, \int_{2}^{5} f(x) d x=-3$, and $\int_{0}^{5} g(x) d x=3$, evaluate
(a)

$$
\begin{aligned}
\int_{0}^{2} f(x) d x & \text { By propenty (6) } \\
\int_{0}^{5} f(x) d x & =\int_{0}^{2} f(x) d x+\int_{2}^{5} f(x) d x \\
7 & =\int_{0}^{2} f(x) d x+(-3) \Rightarrow \int_{0}^{2} f(x) d x=7+3=10
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int_{0}^{5}(2 g(x)-3 f(x)) d x \\
& =\int_{0}^{5} 2 g(x) d x-\int_{0}^{5} 3 f(x) d x \quad \text { propenty (3) }
\end{aligned}
$$

$$
=2 \int_{0}^{5} g(x) d x-3 \int_{0}^{5} f(x) d x \quad \text { propesty }
$$

$$
=2(3)-3(7)=-15
$$

Section 4.3: The Fundamental Theorem of Calculus

Suppose f is continuous on the interval $[a, b]$. For $a \leq x \leq b$ define a new function

$$
g(x)=\int_{a}^{x} f(t) d t
$$

How can we understand this function, and what can be said about it?

Geometric interpretation of $g(x)=\int_{a}^{x} f(t) d t$

$g(x)$ would correspond to the area under f between $t=a$ and $t=x$

Figure

$$
g(a)=0
$$

Theorem: The Fundamental Theorem of Calculus (part 1)

If f is continuous on $[a, b]$ and the function g is defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad \text { for } \quad a \leq x \leq b
$$

then g is continuous on $[a, b]$ and differentiable on (a, b). Moreover

$$
g^{\prime}(x)=f(x)
$$

This means that the new function g is an antiderivative of f on (a, b) ! "FTC" = "fundamental theorem of calculus"

Example:
Evaluate each derivative.

$$
\begin{aligned}
& f(t)=\sin ^{2}(t) \\
& g(x)=\int_{0}^{x} f(t) d t
\end{aligned}
$$

(a) $\frac{d}{d x} \int_{0}^{x} \sin ^{2}(t) d t=\sin ^{2}(x)$

$$
f(t)=\frac{t-\cos t}{t^{4}+1}
$$

(b) $\frac{d}{d x} \int_{4}^{x} \frac{t-\cos t}{t^{4}+1} d t=\frac{x-\cos x}{x^{4}+1}$

$$
g(x)=\int_{4}^{x} f(t) d t
$$

Geometric Argument of FTC

If it exists $g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}$
$h=$ width red region $\quad f(x)=$ height of rectangl

$$
\begin{aligned}
& g(x+h)-g(x) \approx h f(x) \Rightarrow \\
& \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \approx f(x) \Rightarrow \\
& h
\end{aligned} \frac{g(x)-g(x)}{h}=g^{\prime}(x) .
$$

