Oct 27 Math 2253H sec. 05H Fall 2014

Section 4.3: The Fundamental Theorem of Calculus

Theorem: The Fundamental Theorem of Calculus (part 1) If f is continuous on $[a, b]$ and the function g is defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad \text { for } \quad a \leq x \leq b
$$

then g is continuous on $[a, b]$ and differentiable on (a, b). Moreover

$$
g^{\prime}(x)=f(x)
$$

This means that the new function g is an antiderivative of f on (a, b) ! "FTC" = "fundamental theorem of calculus"

Recall our Examples

Evaluate each derivative.
(a) $\frac{d}{d x} \int_{0}^{x} \sin ^{2}(t) d t=\sin ^{2}(x)$
(b) $\frac{d}{d x} \int_{4}^{x} \frac{t-\cos t}{t^{4}+1} d t=\frac{x-\cos x}{x^{4}+1}$

Chain Rule with FTC
Evaluate each derivative.

$$
\text { (a) } \begin{aligned}
& \frac{d}{d x} \int_{0}^{x^{2}} t^{3} d t \\
= & \left(x^{2}\right)^{3}(2 x) \\
= & x^{6}(2 x) \\
= & 2 x^{7}
\end{aligned}
$$

Chan rule: if $u=g(x)$ and $y=f(u)=f(g(x))$
then

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d u}{d u} \cdot \frac{d u}{d x} \\
& =f^{\prime}\left(g(x) g^{\prime}(x)\right.
\end{aligned}
$$

Here, $u=x^{2}$ and

$$
\begin{gathered}
f(u)=\int_{0}^{u} t^{3} d t \\
f^{\prime}(u)=u^{3} \text { and } u^{\prime}(x)=2 x
\end{gathered}
$$

$$
\text { (b) } \begin{aligned}
& \frac{d}{d x} \int_{x}^{7} \cos \left(t^{2}\right) d t \\
= & \frac{d}{d x}\left(-\int_{7}^{x} \cos \left(t^{2}\right) d t\right) \\
= & -\cos \left(x^{2}\right) \cdot 1 \\
= & -\cos \left(x^{2}\right)
\end{aligned}
$$

Propenty of integrels:

$$
\int_{b}^{a} f(t) d t=-\int_{a}^{b} f(t) d t
$$

Leibniz Rule

Suppose a and b are differentiable functions and f is continuous.

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(t) d t=f(b(x)) b^{\prime}(x)-f(a(x)) a^{\prime}(x)
$$

Example:

$$
\begin{gathered}
\frac{d}{d t} \int_{x^{2}}^{\sqrt{x}} f(t) d t=f(\sqrt{x})\left(\frac{1}{2 \sqrt{x}}\right)-f\left(x^{2}\right)(2 x)=\frac{f(\sqrt{x})}{2 \sqrt{x}}-2 x f\left(x^{2}\right) . \\
\frac{d}{d x} \sqrt{x} \quad \frac{d}{d x} x^{2}
\end{gathered}
$$

Example
Evaluate the derivative $\frac{d}{d x} \int_{\sin x}^{\cos x} 3 t^{2} d t$

$$
\begin{aligned}
& a(x)=\sin x \\
& b(x)=\cos x \\
& f(t)=3 t^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{3(\cos x}_{f(\cos x)})^{2}(\underbrace{\prime}_{\left.(\cos x)^{-\sin x}\right)}-\underbrace{3(\sin x)^{2}}_{f(\sin x)}(\underbrace{\cos x}_{(\sin x)}) \\
& =-3 \cos ^{2} x \sin x-3 \sin ^{2} x \cos x
\end{aligned}
$$

Theorem: The Fundamental Theorem of Calculus (part 2)

If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f on $[a, b]$. (i.e. $F^{\prime}(x)=f(x)$)
To evaluate $\int_{a}^{b} f(x) d x$, find an anti derivative $F(x)$ evaluate $F(b)$ and $F(a)$, compute the difference

$$
F(b)-F(a) .
$$

Example: Use the FTC to show that $\int_{0}^{b} x d x=\frac{b^{2}}{2}$ power rule for anti derivatives

$$
\begin{gathered}
f(x)=x \\
F(x)=\frac{x^{1+1}}{1+1}=\frac{x^{2}}{2}
\end{gathered}
$$

$$
x^{n} \rightarrow \frac{x^{n+1}}{n+1}, n \neq-1
$$

so

$$
\begin{aligned}
\int_{0}^{b} x d x & =F(b)-F(0) \\
& =\frac{b^{2}}{2}-\frac{0^{2}}{2}=\frac{b^{2}}{2}
\end{aligned}
$$

Notation

Suppose F is an antiderivative of f. We write

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

or sometimes

$$
\left.\int_{a}^{b} f(x) d x=F(x)\right]_{a}^{b}=F(b)-F(a)
$$

For example

$$
\int_{0}^{b} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{b}=\frac{b^{2}}{2}-\frac{0^{2}}{2}=\frac{b^{2}}{2}
$$

Evaluate each definite integral using the FTC

(a) $\int_{0}^{2} 3 x^{2} d x=\left.x^{3}\right|_{0} ^{2}=2^{3}-0^{3}$

$$
=8-0
$$

$$
=8
$$

(b)

$$
\begin{aligned}
\int_{\frac{\pi}{2}}^{\pi} \cos x d x & =\sin x+\left.1\right|_{\pi / 2} ^{\pi} \\
& =\sin \pi+1-\left(\sin \frac{\pi}{2}+1\right) \\
& =\sin \pi+x-\sin \frac{\pi}{2}-x \\
& =0-1 \\
& =-1
\end{aligned}
$$

(c)

$$
\begin{aligned}
\int_{-1}^{2}\left(y^{2}+2\right) d y & =\int_{-1}^{2} y^{2} d y+\int_{-1}^{2} 2 d y \\
& =\left.\frac{y^{3}}{3}\right|_{-1} ^{2}+\left.2 y\right|_{-1} ^{2} \\
& =\frac{2^{3}}{3}-\frac{(-1)^{3}}{3}+(2 \cdot 2-2 \cdot(-1)) \\
& =\frac{8}{3}+\frac{1}{3}+4+2=\frac{9}{3}+6=9
\end{aligned}
$$

(d)

$$
\begin{aligned}
\int_{1}^{8} \sqrt[3]{u} d u & =\int_{1}^{8} u^{1 / 3} d u \\
& =\left.\frac{u^{4 / 3}}{4 / 3}\right|_{1} ^{8} \frac{1}{3}+1=\frac{4}{3} \\
& =\left.\frac{3}{4} u^{4 / 3}\right|_{1} ^{8}=\frac{3}{4}(8)^{4 / 3}-\frac{3}{4}(1)^{4 / 3} \\
& =\frac{3}{4}(16)-\frac{3}{4}(1)=\frac{3}{4}(15)=\frac{45}{4}
\end{aligned}
$$

(e)

$$
\begin{aligned}
\int_{0}^{2}(t+3)(2 t-1) d t & =\int_{0}^{2}\left(2 t^{2}+5 t-3\right) d t \\
& =\left[2 \frac{t^{3}}{3}+5 \frac{t^{2}}{2}-\left.3 t\right|_{0} ^{2}\right. \\
& =\left(\frac{2}{3} \cdot 2^{3}+\frac{5}{2} \cdot 2^{2}-3 \cdot 2\right)-\left(\frac{2}{3} \cdot 0^{3}+\frac{5}{2} \cdot 0^{2}-3 \cdot 0\right) \\
& =\frac{16}{3}+10-6=\frac{16}{3}+4=\frac{16}{3}+\frac{12}{3}=\frac{28}{3}
\end{aligned}
$$

Example
Use the second FTC to evaluate the derivative. Compare this to the result using the first FTC with the chain rule.

$$
\frac{d}{d x} \int_{\sin x}^{\cos x} 3 t^{2} d t \quad \text { wéll evaluate } \int_{\sin x}^{\cos x} 3 t^{2} d t \text { first, }
$$ then tole the derivative.

$$
\int_{\sin x}^{\cos x} 3 t^{2} d t=\left.t^{3}\right|_{\sin x} ^{\cos x}=(\cos x)^{3}-(\sin x)^{3}
$$

So $\frac{d}{d x} \int_{\sin x}^{\cos x} 3 t^{2} d x=\frac{d}{d x}\left((\cos x)^{3}-(\sin x)^{3}\right)$

$$
\begin{aligned}
& =3(\cos x)^{2} \cdot(-\sin x)-3(\sin x)^{2} \cdot(\cos x) \\
& =-3 \cos ^{2} x \sin x-3 \sin ^{2} x \cos x
\end{aligned}
$$

Caveat! The FTC doesn't apply if f is not continuous!

The function $f(x)=\frac{1}{x^{2}}$ is positive everywhere on its domain. Now consider the calculation

$$
\int_{-1}^{2} \frac{1}{x^{2}} d x=\left.\frac{x^{-1}}{-1}\right|_{-1} ^{2}=-\frac{1}{2}-1=-\frac{3}{2}
$$

Is this believable? Why or why not?

The FTC doesn't apply since f is rot continuous on $[-1,2]$. The integral $\int_{-1}^{2} \frac{1}{x^{2}} d x$ is undefined.

