Oct 28 Math 2253H sec. 05H Fall 2014

Section 4.3: The Fundamental Theorem of Calculus (FTC)

Theorem: The Fundamental Theorem of Calculus (part 1) If f is continuous on $[a, b]$ and the function g is defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad \text { for } \quad a \leq x \leq b
$$

then g is continuous on $[a, b]$ and differentiable on (a, b). Moreover

$$
g^{\prime}(x)=f(x)
$$

This means that the new function g is an antiderivative of f on (a, b) !

Theorem: The Fundamental Theorem of Calculus

 (part 2)If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)
$$

where F is any antiderivative of f on $[a, b]$. (i.e. $F^{\prime}(x)=f(x)$)

To evaluate $\int_{a}^{b} f(x) d x$, we

- find any antiderivative F of f,
- evaluate $F(b)$ and $F(a)$, and
- take the difference $F(b)-F(a)$.

Evaluate each derivative or definite integral using the FTC (part 1 or 2)
(a)

$$
\begin{aligned}
\int_{1}^{5} \frac{1}{x^{2}} d x & =\int_{1}^{s} x^{-2} d x \\
& =\left.\frac{x^{-1}}{-1}\right|_{1} ^{s}=\left.\frac{-1}{x}\right|_{1} ^{5}=\frac{-1}{s}-\frac{-1}{1}=1-\frac{1}{s}=\frac{4}{s}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{0}^{\pi / 4} \sec ^{2} x d x & =\left.\tan x\right|_{0} ^{\pi / 4} \\
& =\tan \frac{\pi}{4}-\tan 0=1-0=1
\end{aligned}
$$

(c) $\frac{d}{d x} \int_{1}^{x^{4}} \frac{1}{t^{2}+1} d t=\frac{4 x^{3}}{x^{8}+1}$
for $f(n)=\int_{1}^{n} \frac{1}{t^{2}+1} d t \quad f^{\prime}(n)=\frac{1}{u^{2}+1}$

$$
\begin{aligned}
& u=g(x)=x^{4}, \quad g^{\prime}(x)=4 x^{2} \\
& \frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)=\frac{1}{\left(x^{4}\right)^{2}+1} \cdot 4 x^{3}
\end{aligned}
$$

(d) $\int_{\pi / 4}^{\pi / 2}(\csc x \cot x+4) d x$
(e) $\frac{d}{d x} \int_{x}^{5}(t+3)(2 t-1) d t$

$$
\begin{aligned}
=\frac{d}{d x} & -\int_{5}^{x}(t+3)(2 t-1) d t \\
& =-(x+3)(2 x-1) \\
& =-2 x^{2}-5 x+3
\end{aligned}
$$

(f)

$$
\begin{aligned}
\int_{1}^{4} \frac{t^{3}+\sqrt{t}}{t^{2}} d t & =\int_{1}^{4}\left(t+t^{-3 / 2}\right) d t \\
& =\frac{t^{2}}{2}-\left.\frac{2}{\sqrt{t}}\right|_{1} ^{4} \\
& =(8-1)-\left(\frac{1}{2}-2\right)=\frac{17}{2}
\end{aligned}
$$

Section 4.4: Indefinite Integrals and Net Change

New notation for antiderivatives:

If $F^{\prime}(x)=f(x)$, i.e. F is any antiderivative of f, we will write

$$
\int f(x) d x=F(x)+C
$$

and we'll call $\int f(x) d x$ the indefinite integral of f.

For example:

$$
\int 2 x d x=x^{2}+C, \quad \text { and } \quad \int \cos t d t=\sin t+C
$$

Note:

$$
\int_{a}^{b} f(x) d x
$$ is called the "definite integral of f from a to b." And, it is a number.

$$
\int f(x) d x
$$

is called an "indefinite integral of f ". And, it is a family of functions.

Table of Indefinite Integrals (things we already know)

$$
\begin{aligned}
& \int c f(x) d x=c \int f(x) d x \\
& \int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x \\
& \int k d x=k x+C \\
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+C, \quad \text { for } n \neq-1
\end{aligned}
$$

Table Continued...

$\begin{array}{ll}\int \sin x d x=-\cos x+C, & \int \cos x d x=\sin x+C \\ \int \sec ^{2} x d x=\tan x+C, & \int \csc ^{2} x d x=-\cot x+C\end{array}$
$\int \sec x \tan x d x=\sec x+C, \quad \int \csc x \cot x d x=-\csc x+C$

Evaluate Each Integral
(a)

$$
\begin{aligned}
\int\left(t^{3}-2 t+\sqrt{t}\right) d t & =\int\left(t^{3}-2 t+t^{1 / 2}\right) d t \\
& =\frac{t^{4}}{4}-2 \frac{t^{2}}{2}+\frac{t^{3 / 2}}{3 / 2}+C \\
& =\frac{t^{4}}{4}-t^{2}+\frac{2}{3} t^{3 / 2}+C
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{0}^{2}(x+1)^{2} d x & =\int_{0}^{2}\left(x^{2}+2 x+1\right) d x \\
& =\frac{x^{3}}{3}+x^{2}+\left.x\right|_{0} ^{2} \\
& =\frac{2^{3}}{3}+2^{2}+2-\left(\frac{0^{3}}{3}+0^{2}+0\right) \\
& =\frac{8}{3}+4+2=\frac{8}{3}+6=\frac{8+18}{3}=\frac{26}{3}
\end{aligned}
$$

Observations

$$
\begin{aligned}
& \text { (c) } \int \tan ^{2} \theta d \theta \\
& =\int\left(\sec ^{2} \theta-1\right) d \theta \\
& =\tan \theta-\theta+C
\end{aligned}
$$

$$
\begin{aligned}
\tan ^{2} \theta & =\tan \theta \tan \theta \\
& =\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \\
& =\frac{\sec ^{2} \theta}{\csc ^{2} \theta}
\end{aligned}
$$

$$
\tan ^{2} \theta+1=\sec ^{2} \theta
$$

$$
\tan ^{2} \theta=\sec ^{2} \theta-1
$$

(d)

$$
\begin{aligned}
\int_{\pi / 4}^{\pi / 2} \frac{d x}{\sin ^{2} x} & =\int_{\pi / 4}^{\pi / 2} \csc ^{2} x d x \\
& =-\left.\cot x\right|_{\pi / 4} ^{\pi / 2} \\
& =-\cot \frac{\pi}{2}-\left(-\cot \frac{\pi}{4}\right) \\
& =-0-(-1)=1
\end{aligned}
$$

(e)

$$
\begin{aligned}
\int \frac{x-1}{\sqrt[3]{x^{2}}} d x & =\int \frac{x-1}{x^{2 / 3}} d x \\
& =\int\left(x^{-1 / 3}-x^{-2 / 3}\right) d x \\
& =\frac{x^{2 / 3}}{2 / 3}-\frac{x^{1 / 3}}{1 / 3}+C \\
& =\frac{3 x^{2 / 3}}{2}-3 \sqrt[3]{x}+C
\end{aligned}
$$

