Oct 2 Math 2253H sec. 05H Fall 2014

Section 3.3: Derivatives and the Shapes of Graphs
Find all the critical points of the function and classify each one as a
local maximum, a local minimum, or neither.
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Figure: Plot of f(x) = x'/3(16 — x).
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Concavity and The Second Derivative

Concavity: refers to the bending nature of a graph. In particular, a

curve is concave down if it’s cupped side is down, and it is concave up
if it's cupped upward.
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Figure: A graph can have either increasing or decreasing behavior and be

either concave up or down.
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Figure: We can consider concavity at a point, but it's best thought of as a
property over an interval. Many function’s graphs have concavity that
changes over the domain.
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Definition of Concavity

If the graph of a function f lies above all of its tangent lines over an
interval /, then f is concave up on /. If the graph of f lies below each of
its tangent lines on an interval /, f is concave down on /.

Theorem: (Second Derivative Test for Concavity)
Suppose f is twice differentiable on an interval /.

» If f’(x) > 0 on /, then the graph of f is concave up on /.

» If f’(x) < 0 on /, then the graph of f is concave down on /.
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Definition: A point P on a curve y = f(x) is called an inflection point
if f is continuous at P and the concavity of f changes at P (from down
to up or from up to down). A point where f”(x) = 0 would be a
candidate for being an inflection point.
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Concavity and Extrema:

Theorem: (Second Derivative Test for Local Extrema)
Suppose f(¢) = 0 and that f” is continuous near c¢. Then

» if f/(c) > 0, f takes a local minimum at c,

» if f/(¢) < 0, then f takes a local maximum at c.

If f(c) = 0, then the test fails. f may or may not have a local extrema.
You can go back to the first derivative test to find out.
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Example

Analyze the function f(x) = In particular, indicate

X
X%+ 1
the intervals on which f is increasing and decreasing,

the intervals on which f is concave up and concave down,
identify critical points and classify any local extrema, and
identify any points of inflection.
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Figure: y = pea
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