Oct 2 Math 2253H sec. 05H Fall 2014
Section 3.3: Derivatives and the Shapes of Graphs
Find all the critical points of the function and classify each one as a local maximum, a local minimum, or neither.

$$
f(x)=x^{1 / 3}(16-x)=16 x^{1 / 3}-x^{4 / 3}
$$

$$
\begin{aligned}
f^{\prime}(x) & =16 \cdot \frac{1}{3} x^{-2 / 3}-\frac{4}{3} x^{1 / 3} \\
& =\frac{16}{3 x^{2 / 3}}-\frac{4 x^{1 / 3}}{3} \cdot \frac{x^{2 / 3}}{x^{2 / 3}} \\
& =\frac{16}{3 x^{2 / 3}}-\frac{4 x}{3 x^{2 / 3}}
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=0 \Rightarrow 16-4 x=0 \Rightarrow x=4 \\
& f^{\prime}(x) \text { DNE } \quad \Rightarrow \quad 3 x^{2 / 3}=0 \Rightarrow x=0
\end{aligned}
$$

2 critical numbers 0 and $4 \quad f^{\prime}(x)=\frac{4(4-x)}{3 \sqrt[3]{x^{2}}}$

$$
f^{\prime}(-1)+\quad f^{\prime}(1) \frac{+}{+} \quad f^{\prime}(s) \frac{-}{+}
$$

f takes neither clocd max or min © $x=0$
f takes a loce moximum at $x=4$.

Figure: Plot of $f(x)=x^{1 / 3}(16-x)$.

Concavity and The Second Derivative

Concavity: refers to the bending nature of a graph. In particular, a curve is concave down if it's cupped side is down, and it is concave up if it's cupped upward.

Concavity

Figure

Figure: A graph can have either increasing or decreasing behavior and be either concave up or down.

Figure: We can consider concavity at a point, but it's best thought of as a property over an interval. Many function's graphs have concavity that changes over the domain.

Definition of Concavity

If the graph of a function f lies above all of its tangent lines over an interval l, then f is concave up on I. If the graph of f lies below each of its tangent lines on an interval l, f is concave down on l.

Theorem: (Second Derivative Test for Concavity) Suppose f is twice differentiable on an interval l.

- If $f^{\prime \prime}(x)>0$ on I, then the graph of f is concave up on l.
- If $f^{\prime \prime}(x)<0$ on I, then the graph of f is concave down on I.

Definition: A point P on a curve $y=f(x)$ is called an inflection point if f is continuous at P and the concavity of f changes at P (from down to up or from up to down). A point where $f^{\prime \prime}(x)=0$ would be a candidate for being an inflection point.

Concavity and Extrema:

Theorem: (Second Derivative Test for Local Extrema) Suppose $f^{\prime}(c)=0$ and that $f^{\prime \prime}$ is continuous near c. Then

- if $f^{\prime \prime}(c)>0, f$ takes a local minimum at c,
- if $f^{\prime \prime}(c)<0$, then f takes a local maximum at c.

If $f^{\prime \prime}(c)=0$, then the test fails. f may or may not have a local extrema. You can go back to the first derivative test to find out.

Example
Analyze the function $f(x)=\frac{x}{x^{2}+1} \ln$ particular, indicate
(a) the intervals on which f is increasing and decreasing,
(b) the intervals on which f is concave up and concave down,
(c) identify critical points and classify any local extrema, and
(d) identify any points of inflection.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(x^{2}+1\right)-x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{x^{2}+1-2 x^{2}}{\left(x^{2}+1\right)^{2}} \Rightarrow f^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}} \\
& f^{\prime \prime}(x)=\frac{-2 x\left(x^{2}+1\right)^{2}-\left(1-x^{2}\right) 2\left(x^{2}+1\right)(2 x)}{\left(x^{2}+1\right)^{4}}=\frac{\left(x^{2}+1\right)\left[-2 x\left(x^{2}+1\right) \cdot 4 x\left(1-x^{2}\right)\right]}{\left(x^{2}+1\right)^{43}}
\end{aligned}
$$

$$
\begin{array}{r}
f^{\prime \prime}(x)=\frac{-2 x^{3}-2 x-4 x+4 x^{3}}{\left(x^{2}+1\right)^{3}}=\frac{2 x^{3}-6 x}{\left(x^{2}+1\right)^{3}}=\frac{2 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}} \\
f^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}} \quad f^{\prime \prime}(x)^{2}=\frac{2 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}}
\end{array}
$$

$$
f^{\prime}(x)=0
$$

$$
\text { if } 1-x^{2}=0
$$

$$
x= \pm 1
$$

Sigh orals's
on f^{\prime}

$$
\begin{aligned}
& f^{\prime}(-2) \frac{\mp}{\mp} f^{\prime}(0) \frac{\ddagger}{+} f^{\prime}(2) \mp \\
& f^{\prime \prime}(x)=0 \Rightarrow 2 x\left(x^{2}-3\right)=0 \Rightarrow x=0, \pm \sqrt{3}
\end{aligned}
$$

$$
f^{\prime \prime}(x)=\frac{2 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}}
$$

Sigh aralysis of $f^{\prime \prime}$

$$
f^{\prime \prime}(-2) \frac{(-)(t)}{t} \quad f^{\prime \prime}(-1) \frac{(-1)(-)}{t} \quad f^{\prime \prime}(1) \frac{t(-)}{t} \quad f^{\prime \prime}(2) \frac{t(t)}{t}
$$

(c) f is incousing on $(-1,1)$
f is decreasing or $(-\infty,-1) \cup(1, \infty)$
(b) f is concame $n p$ on $(-\sqrt{3}, 0) \cup(\sqrt{3}, \infty)$ f is concave doun on $(-\infty,-\sqrt{3}) \cup(0, \sqrt{3})$
(c) Critical number -1 on 1
f tokes a
$2^{\text {nd }}$ Der. test $f^{\prime \prime}(-1)>0$ locel minimum © - 1
$2^{\text {nd }}$ Der. test $f^{\prime \prime}(1)<0$ f talks a local maxim $C 1$
(d) f has inflection points at

$$
-\sqrt{3}, 0, \text { and } \sqrt{3}
$$

Figure: $y=\frac{x}{x^{2}+1}$

