Oct 30 Math 2253H sec. 05H Fall 2014

Section 4.4: Indefinite Integrals and Net Change

New notation for antiderivatives:

If $F^{\prime}(x)=f(x)$, i.e. F is any antiderivative of f, we will write

$$
\int f(x) d x=F(x)+C
$$

and we'll call $\int f(x) d x$ the indefinite integral of f.

Note:

$$
\int_{a}^{b} f(x) d x
$$ is called the "definite integral of f from a to b." And, it is a number.

$$
\int f(x) d x
$$

is called an "indefinite integral of f ". And, it is a family of functions.

Table of Indefinite Integrals (things we already know)

$$
\begin{aligned}
& \int c f(x) d x=c \int f(x) d x \\
& \int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x \\
& \int k d x=k x+C \\
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+C, \quad \text { for } n \neq-1
\end{aligned}
$$

Table Continued...

$\begin{array}{ll}\int \sin x d x=-\cos x+C, & \int \cos x d x=\sin x+C \\ \int \sec ^{2} x d x=\tan x+C, & \int \csc ^{2} x d x=-\cot x+C\end{array}$
$\int \sec x \tan x d x=\sec x+C, \quad \int \csc x \cot x d x=-\csc x+C$

Evaluate the definite integral

$$
\begin{array}{rlrl}
& \int_{\pi / 6}^{\pi / 3} \cos ^{2}\left(\frac{r}{2}\right) d r & \text { Hint: } \cos ^{2} \theta & =\frac{1}{2}+\frac{1}{2} \cos (2 \theta) \\
=\int_{\pi / 6}^{\pi / 3}\left(\frac{1}{2}+\frac{1}{2} \cos (r)\right) d r & =\frac{1}{2}+\frac{1}{2} \cos \left(2 \cdot \frac{r}{2}\right) \\
& =\frac{1}{2} r+\left.\frac{1}{2} \sin r\right|_{\pi / 6} ^{\pi / 3} & \frac{1}{2} \cos (r) \\
& =\frac{1}{2} \cdot \frac{\pi}{3}+\frac{1}{2} \sin \left(\frac{\pi}{3}\right)-\left(\frac{1}{2} \cdot \frac{\pi}{6}+\frac{1}{2} \sin \left(\frac{\pi}{6}\right)\right) \\
& =\frac{\pi}{6}+\frac{\sqrt{3}}{4}-\left(\frac{\pi}{12}+\frac{1}{4}\right)=\frac{\pi}{6}-\frac{\pi}{12}+\frac{\sqrt{3}}{4}-\frac{1}{4} & =\frac{\pi}{12}+\frac{\sqrt{3}-1}{4}
\end{array}
$$

We had

$$
\int f(x) d x=F(x)+C \quad \text { means } \quad F^{\prime}(x)=f(x)
$$

And, according to the Fundamental Theorem of Calculus, if f is continuous on $[a, b]$ then

$$
\begin{gathered}
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x), \quad a \leq x \leq b, \quad \text { and } \\
\int_{a}^{b} f(x) d x=F(b)-F(a)
\end{gathered}
$$

where F is any antiderivative of f.

A consequence is the "Net Change" Theorem:

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

The integral of the rate of change is the net change of the function!

Example

A particle moves along the x-axis so that it's position $s(t)$ satisfies

$$
s(0)=-3 \quad \text { and } \quad s(4)=13
$$

Suppose the particle's velocity at time t is given by $v(t)$. Evaluate

$$
\begin{aligned}
\int_{0}^{4} v(t) d t=\int_{0}^{4} S^{\prime}(t) d t & =s(4)-S^{\prime}(0) \\
& =13-(-3)=16
\end{aligned}
$$

Evaluate (looking ahead to section 4.5)

$$
\begin{aligned}
\int_{0}^{1} 2 x\left(x^{2}+1\right)^{2} d x & =\int_{0}^{1} 2 x\left(x^{4}+2 x^{2}+1\right) d x \\
& =\int_{0}^{1}\left(2 x^{5}+4 x^{3}+2 x\right) d x \\
& =2 \frac{x^{6}}{6}+4 \frac{x^{4}}{4}+\left.2 \frac{x^{2}}{2}\right|_{0} ^{1} \\
& =\frac{x^{6}}{3}+x^{4}+\left.x^{2}\right|_{0} ^{1}=\frac{16}{3}+1^{4}+1^{2}-\left(\frac{0^{6}}{3}+0^{4}+0^{2}\right) \\
& =\frac{1}{3}+1+1=\frac{7}{3}
\end{aligned}
$$

Suppose we wanted to evaluate

$$
\int_{0}^{1} 2 x\left(x^{2}+1\right)^{10} d x
$$

The some approach con be used. But it's really unpleasant!

Differentials (revisit of section 2.9)

Definition: Let f be a differentiable function of x. The variable

$$
d x
$$

is called a differential. It is an independent variable. Letting $y=f(x)$, the differential

$$
d y
$$

is a dependent variable defined by

$$
d y=f^{\prime}(x) d x
$$

$$
d y=\frac{d y}{d x} d x
$$

$$
f^{\prime}(x)=\frac{d y}{d x}
$$

Examples:

$$
d y=\frac{d y}{d x} d x
$$

(a) Given $y=\sin ^{2}(x)$, express $d y$ in terms of $d x$.

$$
\frac{d y}{d x}=2 \sin (x) \cos (x) \Rightarrow d y=2 \sin (x) \cos (x) d x
$$

(b) Given $u=x^{2}+2 x$, express $d u$ in terms of $d x$.

$$
\frac{d u}{d x}=2 x+2 \quad \Rightarrow \quad d u=(2 x+2) d x
$$

(c) Given $u=\frac{x}{3}+1$, express $d u$ in terms of $d x$.

$$
\frac{d u}{d x}=\frac{1}{3} \quad \Rightarrow \quad d u=\frac{1}{3} d x
$$

(d) Given $v=\theta^{8}$, express $d v$ in terms of $d \theta$.

$$
\frac{d v}{d \theta}=8 \theta^{7} \quad \Rightarrow \quad d v=8 \theta^{7} d \theta
$$

well write the integral in

$$
\int_{0}^{1} 2 x\left(x^{2}+1\right)^{2} d x=\frac{7}{3}
$$ terms of u.

Evaluate this by letting $u=x^{2}+1$.

$$
\begin{aligned}
& u=x^{2}+1 \\
& d u=2 x d x
\end{aligned}
$$

when $x=0$

$$
u=0^{2}+1=1
$$

$$
\begin{aligned}
=\int_{1}^{2} u^{2} d u & =\left.\frac{u^{3}}{3}\right|_{1} ^{2} \\
& =\frac{2^{3}}{3}-\frac{1^{3}}{3}=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}
\end{aligned}
$$

$$
\int_{0}^{1} 2 x\left(x^{2}+1\right)^{10} d x
$$

Evaluate this by letting $u=x^{2}+1$.

$$
\begin{aligned}
& u=x^{2}+1 \\
& d u=2 x d x \\
& u=1 \text { when } x=0 \\
& \text { and }
\end{aligned}
$$

$$
u=2 \text { when } x=1
$$

$$
\begin{aligned}
& \int_{0}^{1}\left(x^{2}+1\right)^{10} 2 x d x \\
&=\int_{1}^{2}(u)^{10} d u \\
&=\int_{1}^{2} u^{10} d u
\end{aligned}
$$

$$
\begin{aligned}
=\left.\frac{4^{11}}{11}\right|_{1} ^{2} & =\frac{2^{11}}{11}-\frac{1^{11}}{11} \\
& =\frac{2048}{11}-\frac{1}{11}=\frac{2047}{11}
\end{aligned}
$$

Section 4.5: The Substitution Rule

Theorem: Suppose $u=g(x)$ is a differentiable function, and f is continuous on the range of g. Then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

This is often refered to as u-substitution.
This is the Chain Rule in reverse!

$$
\text { For } \begin{aligned}
u=g(x), & d u=g^{\prime}(x) d x \\
& \text { and }
\end{aligned} \quad f(g(x))=f(u)
$$

Evaluate each Indefinite integral using Substitution as Needed

$$
\text { (a) } \begin{aligned}
& \int(3 x+2)^{3} d x \\
&=\int(u)^{3} \frac{1}{3} d u \\
&=\frac{1}{3} \int u^{3} d u=\frac{1}{3} \frac{u^{4}}{4}+C \\
&=\frac{1}{12} u^{4}+C \\
&=\frac{1}{12}(3 x+2)+C
\end{aligned}
$$

$$
\text { Let } u=3 x+2
$$

$$
d u=3 d x
$$

$$
\frac{1}{3} d u=d x
$$

