Oct 30 Math 2253H sec. 05H Fall 2014

Section 4.4: Indefinite Integrals and Net Change

New notation for antiderivatives:
If F'(x) = f(x), i.e. F is any antiderivative of f, we will write

/ f(x) dx = F(x)+ C

and we'll call [ f(x) dx the indefinite integral of f.
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Note:

/ab f(x) dx

is called the "definite integral of f from ato b.” And, it

is a number.
/ f(x) dx

is called an "indefinite integral of 7. And, it is a family
of functions.
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Table of Indefinite Integrals (things we already know)
/cf(x) ax = c/f(x) dx
/(f(x)ig(x)) dx:/f(x) dxi/g(x) dx

/kdx = kx+C

xn+1
/x”dx: n+1+C’ forn £ —1
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Table Continued...

/sinxdx = —cos x+C, /cosxdx =sinx+C
/seczxdx =tanx+C, /c302 xdx = —cotx+C

/secxtanxdx:secx+C, /cscxcotxdx: —cscx+C
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Evaluate the definite integral
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We had
/f(x) dx = F(x)+C means F'(x)= f(x).

And, according to the Fundamental Theorem of Calculus, if f is
continuous on [a, b] then

d X
dx/a f(tydt =f(x), a<x<b, and

/  Hx) dx = F(b) — F(a)

where F is any antiderivative of f.

() October 28, 2014

6/41



A consequence is the "Net Change” Theorem:

/ " F(x)dx = F(b) - F(a)

The integral of the rate of change is the net change of the function!
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Example
A particle moves along the x-axis so that it's position s(t) satisfies

s(0)=-3 and s(4)=13.

Suppose the particle’s velocity at time t is given by v(t). Evaluate

4
/4v(t)dt - IS'(Q)JL TS (4) - Siy
0

0

A3 - () = G
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Evaluate (looking ahead to section 4.5)
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Suppose we wanted to evaluate

1
/2x(x2+1)1°dx.
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Differentials (revisit of section 2.9)

Definition: Let f be a differentiable function of x. The variable
ax

is called a differential. It is an independent variable. Letting y = f(x),
the differential

dy
is a dependent variable defined by

dy = f'(x)dx.
\V\ Lt\o::-‘-‘t nsz—o&mn A‘g - "‘II?(- Jx
0= I
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Examples:

(a) Given y = sinz(x), express dy in terms of dx.

% 2900 Cos(w) = dy = 25003 Gl dx

(b) Given u = x® + 2x, express du in terms of dx.

‘Q—

> 21x42 - dw= (2x+2) dx

[>
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(c) Given u = 3 + 1, express du in terms of dx.

_’:!/l = éh:%;){

(d) Given v = 68, express dv in terms of dé.

'.,.
v 69 = dv= 86 40
36
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;
/ 2x(x?+1)"0 dx

0
Evaluate this by letting u = x2 + 1.
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Section 4.5: The Substitution Rule

Theorem: Suppose u = g(x) is a differentiable function, and f is
continuous on the range of g. Then

/f g(x)dx_/f

This is often refered to as u-substitution.
This is the Chain Rule in reverse!

For = C}(Y) B AM:%I()() dx

and -S:(%(x)> =3C(l~§

() October 28, 2014

17 /41



Evaluate each Indefinite integral using Substitution as

Needed
L w=3x+2
3
(@) / (3x+2)° dx o3l
3 :%Jl"‘: AX

< —.J{ (3)(+7..) T C
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