Oct 6 Math 2253H sec. 05H Fall 2014

Section 3.4 Limits at Infinity

Definition: Let f be defined on an interval (a, ∞). Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

provided the value of f can be made arbitrarily close to L by taking x sufficiently large.

Similarly

Defintion: Let f be defined on an interval $(-\infty, a)$. Then

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

provided the value of f can be made arbitrarily close to L by taking x sufficiently large and negative.

Formal Definition

Definition: Let f be defined on an interval (a, ∞). Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

provided for every number $\epsilon>0$ there exists a number $M>0$ such that
if $x>M$, then $|f(x)-L|<\epsilon$.
Similarly, for f defined on $(-\infty, a)$

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

provided for every number $\epsilon>0$ there exists a number $M>0$ such that

$$
\text { if } x<-M \text {, then }|f(x)-L|<\epsilon \text {. }
$$

Proof that $\lim _{x \rightarrow \infty} \frac{1}{x}=0 . \quad f(x)=\frac{1}{x} \quad L=0$
Need to find $M>0$ such that

$$
\left|\frac{1}{x}-0\right|<\varepsilon \quad \text { whenever } \quad x>M
$$

for any $\varepsilon>0$.
Note $\left|\frac{1}{x}-0\right|=\left|\frac{1}{x}\right|$ so $\frac{1}{|x|}<\varepsilon$ requires
(divide by ε, moet by $|x|$)

$$
\frac{1}{\varepsilon}<|x|
$$

for $x>0$ we need $x>\frac{1}{\varepsilon}$
So we con take $M=\frac{1}{\varepsilon}$.

Proof: Let $\varepsilon>0$. Set $M=\frac{1}{\varepsilon}$ so that $M>0$.

Note that if $x>M$, then

$$
x>\frac{1}{\varepsilon} \Rightarrow \varepsilon>\frac{1}{x}=\frac{1}{|x|} \quad(\text { since } x>0)
$$

That is $\quad\left|\frac{1}{x}-0\right|<\varepsilon$.

Hence $\lim _{x \rightarrow \infty} \frac{1}{x}=0$.

This argument is easily modified t Show that

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=0 \quad \text { for any } r>0 \text {. }
$$

Infinite limits at infinity

We may have a limit such as

$$
\lim _{x \rightarrow \infty} f(x)=\infty, \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=\infty
$$

The right hand sides may also be $+\infty$ or $-\infty$.

This means that $f(x)$ becomes unboundedly large (positively or negatively) as x becomes unboundedly large.

Examples

$\lim _{x \rightarrow \infty} x^{2}=\infty$

$$
\lim _{x \rightarrow-\infty} x^{3}=-\infty
$$

$\lim _{x \rightarrow \infty}\left(x^{2}-x\right)=\lim _{x \rightarrow \infty} x(x-1)=\infty \quad$ " $\infty-\infty$ " is \quad not a numbe
$\lim _{x \rightarrow \infty}\left(x^{4}-x^{6}\right)=\lim _{x \rightarrow \infty} x^{4}\left(1-x^{2}\right)=-\infty$

The indeterminate form $\infty-\infty$

Evaluate

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+3 x}\right) \\
= & \lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+3 x}\right) \cdot \frac{\left(x+\sqrt{x^{2}+3 x}\right)}{x+\sqrt{x^{2}+3 x}} \\
= & \lim _{x \rightarrow \infty} \frac{x^{2}-\left(x^{2}+3 x\right)}{x+\sqrt{x^{2}+3 x}} \\
= & \lim _{x \rightarrow \infty} \frac{-3 x}{x+\sqrt{x^{2}+3 x}}
\end{aligned}
$$

we con use

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=0 \quad \text { for } r>0
$$

If we get rid of the radicel

Use the conjugate

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{-3 x}{x+\sqrt{x^{2}+3 x}} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}
\end{aligned} \begin{aligned}
& \text { for } x>0 \\
& x=\sqrt{x^{2}} \\
& \frac{1}{x}=\frac{1}{\sqrt{x^{2}}}
\end{aligned} \quad \begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{-3}{1+\sqrt{\left(x^{2}+3 x\right) \frac{1}{x^{2}}}} \\
& =\lim _{x \rightarrow \infty} \frac{-3}{1+\sqrt{1+\frac{3}{x}}}=\frac{-3}{1+\sqrt{1+0}}=\frac{-3}{2}
\end{aligned}
$$

Section 3.5: Graphing
Analyze the function $f(x)=5 x^{2 / 3}-2 x^{5 / 3}$, and use the results to produce a rough plot of the graph $y=f(x)$.

$$
\begin{aligned}
& f(x)=5 x^{2 / 3}-2 x^{5 / 3} \quad \text { the domain is } \\
& \text { There an no vertical asymptotes. }
\end{aligned}
$$

Look for horizontal asymptotes:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=\lim _{x+\infty} 5 x^{2 / 3}-2 x^{5 / 3}=\lim _{x \rightarrow \infty} x^{2 / 3}(5-2 x)=-\infty \\
& \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} x^{2 / 3}(5-2 x)=\infty
\end{aligned}
$$

f has no horizontal asymptotes but it goes down at the right oud up at the fan left.

Intercepts: y-intercept $f(0)=5(0)^{2 / 3}-2(0)^{5 / 3}=0$
x-intercept $(s) \quad f(x)=0 \Rightarrow x^{2 / 3}(5-2 x)=0$
There are 2 of them $(0,0)$ and $\left(\frac{5}{2}, 0\right)$.

