Oct 9 Math 2253H sec. 05H Fall 2014

Section 3.7: Applied Optimization

Example: A $216 \mathrm{~m}^{2}$ rectangular pea patch is to be enclosed by a fence and divided into two equal parts by another fence parallel to one of its sides. What dimensions of the outer rectangle will require the smallest total length of fencing and how much fencing will be needed?

Our Work on this Example:

We let x and y be the length and width of a rectangular patch, respectively (each in meters). The area constraint gives

$$
x y=216 \mathrm{~m}^{2} \quad \Longrightarrow \quad x=\frac{216}{y}
$$

The total amount of fencing needed was

$$
F=2 x+3 y m
$$

So given the constraint we want to minimize the objective function

$$
F(y)=\frac{432}{y}+3 y \quad y>0
$$

Find minimum F;
Crit \#: $\quad F^{\prime}(y)=-432 y^{2}+3=\frac{-432}{y^{2}}+3$
$F^{\prime}(y)$ DNE if $y=0$ not of interest since $y>0$

$$
\begin{aligned}
& F^{\prime}(y)=0 \Rightarrow \frac{-432}{y^{2}}+3=0 \Rightarrow 3=\frac{432}{y^{2}} \\
& \Rightarrow y^{2}=\frac{432}{3}=144 \Rightarrow y=12 \text { or } y=-12
\end{aligned}
$$

One critical number for $y>0$ is $y=12$.

Verity that $F(12)$ is a minimum:
$2^{\text {nd }}$ Der. test:

$$
F^{\prime \prime}(y)=-2(-432) y^{-3}=\frac{864}{y^{3}}
$$

$F^{\prime \prime}(12)=\frac{864}{12^{3}}>0 \quad F$ is concave $u p$ $F(12)$ is a mininun!

The minium for y is 12 .

$$
\text { For } x \text { it is } \frac{216}{12}=18
$$

When $x=18$ and $y=12$

$$
F=2(18)+3(12) m=(36+36) m=72 m
$$

The dimensions are $12 n \times 18 m$ with 72 n of fencing needed.

Applied Optimization Example
Show that among all rectangles with perimeter 8 m , the one with the largest area is a square.

Generic rectangle

Let x, y be the length and width in M.

Perimeter $P=2 x+2 y$
we require $P=8$ ie.

$$
2 x+2 y=8
$$

constraint

From the constraint: $\quad 2 y=8-2 x \Rightarrow y=4-x$

As a function of x alone

$$
A(x)=x(4-x)=4 x-x^{2} \quad 0<x<4
$$

Find crit \# $A^{\prime}(x)=4-2 x \quad A^{\prime}(x) D N E$ never

$$
A^{\prime}(x)=0 \Rightarrow 4-2 x=0 \Rightarrow x=2
$$

$2^{\text {nd }}$ Der. test: $A^{\prime \prime}(x)=-2$ so $A^{\prime \prime}(2)=-2<0$
A takes a local max at $x=2$

The opting length is 2 m .
The optimal width is $y=(4-2) m=2 m$

So the optimum is a square.

Applied Optimization Example
A can in the shape of a right circular cylinder is to have a volume of 128π cubic cm. The material that the top and bottom are made of costs $\$ 0.20 / \mathrm{cm}^{2}$ and the material that the lateral surface is made of costs $\$ 0.10 / \mathrm{cm}^{2}$. Find the dimensions of the can that minimize the total cost of production.
-r -1

Lat r and h be the base radius and height of such a cylinder (in cm).
Volum $V=\pi r^{2} h$ given $V=128 \pi \mathrm{~cm}^{3}$

Build cost function:

$$
\begin{array}{rlrl}
\text { Fraction : } & \text { cost } & =\text { area } \times \text { cost/unit area } \\
\text { Top }+ \text { Bottom } & & \text { cost } & =2 \pi r^{2} \mathrm{~cm}^{2} \times\left(20 \frac{\phi}{\mathrm{~cm}^{2}}\right) \\
& =40 \pi r^{2} \$ \\
& & &
\end{array}
$$

Luteal surface

$$
\begin{aligned}
\text { Cost } & =2 \pi \mathrm{rh} \mathrm{~cm}^{2} \cdot\left(10 \frac{\phi}{\mathrm{~cm}^{2}}\right) \\
& =20 \pi \mathrm{rh} \phi
\end{aligned}
$$

Cost for one can $C=40 \pi r^{2}+20 \pi r h$ objective

From $V=128 \pi \quad \pi r^{2} h=128 \pi \Rightarrow$

$$
h=\frac{128}{r^{2}}
$$

As a function of only $r \quad C(r)=40 \pi r^{2}+20 \pi r\left(\frac{128}{r^{2}}\right)$

$$
C(r)=40 \pi r^{2}+\frac{2560 \pi}{r}, r>0 \quad \underset{\text { this }}{\operatorname{minimize}}
$$

Find crit $\# \quad C^{\prime}(r)=80 \pi r-\frac{2560 \pi}{r^{2}}$
$C^{\prime}(r) P N E$ if $r=0$-not of interest hen

$$
\begin{array}{r}
C^{\prime}(r)=0 \Rightarrow 80 \pi r-\frac{2560 \pi}{r^{2}}=0 \Rightarrow \\
80 \pi r=\frac{2560 \pi}{r^{2}} \\
r^{3}=\frac{2560 \pi}{80 \pi}=32
\end{array}
$$

$$
r=\sqrt[3]{32}=2 \sqrt[3]{4}
$$

Verify we hove a minimum

$$
\begin{aligned}
& C^{\prime \prime}(r)=80 \pi+\frac{2 \cdot(2560) \pi}{r^{3}} \\
& C^{\prime \prime}(\sqrt[3]{32})=80 \pi+\frac{2(2560 \pi)}{32}>0
\end{aligned}
$$

$C(\sqrt[3]{32})$ is a minimum.

$$
h=\frac{128}{(\sqrt[3]{32})^{2}}=\frac{128}{32^{2 / 3}}
$$

The dimensions for minimum cost are

$$
\left.\begin{array}{rl}
r & =\sqrt[3]{32} \mathrm{~cm} \quad h
\end{array}\right)=\frac{128}{32^{2 / 3}} \mathrm{~cm} ~ 子 ~ ت 3.17 \mathrm{~cm} \quad \approx 12.7 \mathrm{~cm}
$$

